Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114311
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.contributorResearch Institute for Advanced Manufacturing-
dc.contributorMainland Development Office-
dc.creatorNiu, MC-
dc.creatorChen, CJ-
dc.creatorLi, W-
dc.creatorYang, K-
dc.creatorLuan, JH-
dc.creatorWang, W-
dc.creatorJiao, ZB-
dc.date.accessioned2025-07-24T02:01:38Z-
dc.date.available2025-07-24T02:01:38Z-
dc.identifier.issn1359-6454-
dc.identifier.urihttp://hdl.handle.net/10397/114311-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2023 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.en_US
dc.rights© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Niu, M. C., Chen, C. J., Li, W., Yang, K., Luan, J. H., Wang, W., & Jiao, Z. B. (2023). Atomic-scale understanding of solute interaction effects on grain boundary segregation, precipitation, and fracture of ultrahigh-strength maraging steels. Acta Materialia, 253, 118972 is available at https://doi.org/10.1016/j.actamat.2023.118972.en_US
dc.subjectGrain boundary embrittlementen_US
dc.subjectGrain boundary segregationen_US
dc.subjectMaraging steelen_US
dc.subjectPrecipitationen_US
dc.titleAtomic-scale understanding of solute interaction effects on grain boundary segregation, precipitation, and fracture of ultrahigh-strength maraging steelsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume253-
dc.identifier.doi10.1016/j.actamat.2023.118972-
dcterms.abstractUnderstanding the fundamental mechanisms of embrittlement and de-embrittlement is crucial for the development of strategies toward advanced steels with improved performance. In this study, the solute interaction effects on grain boundary (GB) segregation, precipitation, and fracture of Fe–Ni–Ti–(Mo) maraging steels were systematically investigated through a combination of experimental and theoretical techniques, including scanning transmission electron microscopy, atom probe tomography, and first-principles calculations. Our results reveal that the Fe–Ni–Ti maraging steel suffers from serious intergranular embrittlement and the mechanism is related to the formation of coarse Ni3Ti precipitates and associated precipitate-free zones (PFZs) at GBs, which facilitate the crack initiation and growth along the GBs. Interestingly, adding Mo to the maraging steel effectively suppresses the intergranular embrittlement, thereby substantially improving the ductility. Atomistic analyses reveal that Mo de-embrittles the GBs by reducing the segregation of Ni and Ti, which substantially inhibits the formation of coarse Ni3Ti precipitates and PFZs at the GBs, thereby alleviating their harmful impact on the GB cracking. In addition, the Mo segregation enhances the GB cohesion, which may play a minor role in suppressing the GB fracture.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationActa materialia, July 2023, v. 253, 118972-
dcterms.isPartOfActa materialia-
dcterms.issued2023-07-
dc.identifier.scopus2-s2.0-85154534705-
dc.identifier.eissn1873-2453-
dc.identifier.artn118972-
dc.description.validate202507 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3927en_US
dc.identifier.SubFormID51699en_US
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.