Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114309
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.contributorResearch Institute for Advanced Manufacturing-
dc.contributorMainland Development Office-
dc.creatorLi, Wen_US
dc.creatorWang, Wen_US
dc.creatorNiu, MCen_US
dc.creatorYang, Ken_US
dc.creatorLuan, JHen_US
dc.creatorZhang, HWen_US
dc.creatorJiao, ZBen_US
dc.date.accessioned2025-07-24T02:01:37Z-
dc.date.available2025-07-24T02:01:37Z-
dc.identifier.issn1359-6454en_US
dc.identifier.urihttp://hdl.handle.net/10397/114309-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectHigh-entropy alloyen_US
dc.subjectPrecipitationen_US
dc.subjectSpinodal decompositionen_US
dc.subjectStrengthening mechanismen_US
dc.titleUnraveling the two-stage precipitation mechanism in a hierarchical-structured fcc/L2₁ high-entropy alloy : experiments and analytical modelingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume262en_US
dc.identifier.doi10.1016/j.actamat.2023.119426en_US
dcterms.abstractUnderstanding the phase stability and precipitation mechanisms is crucial for engineering multiphase nanostructured alloys with optimal mechanical properties. In this work, we studied the formation and temporal evolution of nanoprecipitates and their effect on mechanical properties of an fcc/L21 eutectic high-entropy alloy through a combination of experiments and analytical modeling. Aging the alloy at 1023 K results in the precipitation of coherent L12 nanoparticles in the fcc phase and coherent bcc nanoparticles in the L21 phase, leading to the formation of an fcc/L12 + L21/bcc hierarchical structure. Notably, the scanning transmission electron microscopy (STEM) results reveal that the precipitation in both the fcc and L21 phases is not through a one-step nucleation, but a two-stage transformation consisting of an initial chemical separation via spinodal decomposition and subsequent structural ordering/disordering. The Gibbs free energy diagrams of the fcc and L21 phases were modeled through numerical techniques, and the spinodal decomposition regions of the two systems at different temperatures were calculated. Based on the modeling results, we discussed the phase stability and thermodynamics of spinodal decomposition of the two phases. In addition, the formation of hierarchical structure substantially enhances the strength of the alloy. Modeling of the strengthening mechanisms reveals that the order strengthening of L12 nanoparticles plays a major role in enhancing the yield strength of the alloy, whereas the contribution from the bcc nanoparticles can be negligible. Our findings provide insights into the phase stability, precipitation and strengthening mechanisms of hierarchical-structured alloys.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationActa materialia, 1 Jan. 2024, v. 262, 119426en_US
dcterms.isPartOfActa materialiaen_US
dcterms.issued2024-01-01-
dc.identifier.scopus2-s2.0-85173233079-
dc.identifier.eissn1873-2453en_US
dc.identifier.artn119426en_US
dc.description.validate202507 bcch-
dc.identifier.FolderNumbera3927-
dc.identifier.SubFormID51697-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-01-01en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-01-01
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.