Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114308
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.contributorResearch Institute for Advanced Manufacturingen_US
dc.creatorHu, Sen_US
dc.creatorTan, Yen_US
dc.creatorShi, Wen_US
dc.creatorJi, Xen_US
dc.creatorChen, Ben_US
dc.creatorJiao, Zen_US
dc.creatorXiang, Sen_US
dc.date.accessioned2025-07-24T02:01:37Z-
dc.date.available2025-07-24T02:01:37Z-
dc.identifier.issn1359-6462en_US
dc.identifier.urihttp://hdl.handle.net/10397/114308-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectHierarchical structureen_US
dc.subjectMechanical propertyen_US
dc.subjectResistance to crack propagationen_US
dc.subjectTitanium alloyen_US
dc.titleUltrahigh strength and damage tolerance in a hierarchical-structured titanium alloyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume254en_US
dc.identifier.doi10.1016/j.scriptamat.2024.116317en_US
dcterms.abstractAchieving damage tolerance in structural materials can be challenging due to the need for both high strength and ductility, which are typically incompatible properties. The common post-processing techniques in thermomechanical machining enable us to fabricate metal materials with distinctive microstructures, thereby enhancing the mechanical properties of the materials. We show that a hierarchical-structured titanium (HST) alloy consisting of belt-like α phase (αb), submicron-scaled oval α phase (αo), and nano-scaled secondary α phase (αs) has been designed by employing precision and user-friendly process routes. The hierarchical microstructure performs high strength while preserving respectable ductility. The ultrahigh strength (σYS∼1257 MPa and σUTS∼1411 MPa)) can be mainly attributed to the grain boundary strengthening served by hierarchical α phase. Moreover, the unique architecture provides excellent resistance to crack propagation, obtaining a large ductility (20%), making it a highly promising structural material for engineering applications.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationScripta materialia, 1 Jan. 2025, v. 254, 116317en_US
dcterms.isPartOfScripta materialiaen_US
dcterms.issued2025-01-01-
dc.identifier.scopus2-s2.0-85202162575-
dc.identifier.eissn1872-8456en_US
dc.identifier.artn116317en_US
dc.description.validate202507 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3927, a4050-
dc.identifier.SubFormID51696, 52014-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis research was funded by the National Natural Science Foundation of China (52474403 and 52161010), Guizhou Provincial Program on Commercialization of Scientific and Technological Achievements (2023001), Central Government in Guidance of Local Science and Technology Development Funds (2024032), the Talents Project of Guizhou University ([2023]53), the Research Grants Council of Hong Kong (25202719 and 15227121), and the Research Institute for Advanced Manufacturing (P0041364 and P0046108).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-01-01en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-01-01
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.