Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114306
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.contributorResearch Institute for Advanced Manufacturingen_US
dc.contributorMainland Development Officeen_US
dc.creatorNiu, MCen_US
dc.creatorQiu, Sen_US
dc.creatorYu, Qen_US
dc.creatorLi, Wen_US
dc.creatorZhang, SZen_US
dc.creatorGuo, JMen_US
dc.creatorLuan, JHen_US
dc.creatorWang, Wen_US
dc.creatorYang, Ten_US
dc.creatorWang, XLen_US
dc.creatorJiao, ZBen_US
dc.date.accessioned2025-07-24T02:01:35Z-
dc.date.available2025-07-24T02:01:35Z-
dc.identifier.issn1359-6454en_US
dc.identifier.urihttp://hdl.handle.net/10397/114306-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectEutectic high-entropy alloyen_US
dc.subjectHigh-temperature mechanical propertiesen_US
dc.subjectMicrostructure formation mechanismen_US
dc.subjectPrecipitationen_US
dc.subjectStrengthening mechanismen_US
dc.titleAchieving excellent elevated-temperature mechanical properties in dual-phase high-entropy alloys via nanoscale co-precipitation and heterostructure engineeringen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume284en_US
dc.identifier.doi10.1016/j.actamat.2024.120634en_US
dcterms.abstractEutectic high-entropy alloys (EHEAs) have favorable mechanical properties at room temperature but limited strength at elevated temperatures. Here we report a novel approach to remarkably enhance both room- and elevated-temperature mechanical properties of EHEAs via nanoscale co-precipitation and heterostructure engineering. We found that the addition of Nb to an Al–Co–Cr–Fe–Ni EHEA not only triggers the precipitation of L12 nanoprecipitates in the FCC phase but also induces the co-precipitation of α' and Laves nanoprecipitates in the B2 phase, resulting in the formation of a hierarchical heterostructure. The precipitation strengthening from the L12, α', and Laves nanoprecipitates and the hetero-deformation induced strengthening elevate the yield strength to 1076 MPa at room temperature and 905 MPa at 700 °C while maintaining a high ductility of 10%–50% in this temperature range. First-principles calculations were used to evaluate the intrinsic energetics of the multicomponent FCC and B2 phases, and the results reveal that both phases can accommodate plastic deformation via a dislocation slip mechanism. The dislocation interactions in the two phases and the hetero-deformation induced strengthening contribute to the large strain hardening of the alloy at room temperature. At 700 °C, the increased atomic mobility facilitates the movement of dislocations in the deformable B2 and FCC phases, and the deformation also induces grain boundary sliding and dynamic recrystallization, which together substantially enhance the alloy ductility at elevated temperatures. The strategy of nanoscale co-precipitation and heterostructure engineering can be applied to other materials for achieving excellent mechanical properties.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationActa materialia, 1 Jan. 2025, v. 284, 120634en_US
dcterms.isPartOfActa materialiaen_US
dcterms.issued2025-01-01-
dc.identifier.scopus2-s2.0-85211721886-
dc.identifier.eissn1873-2453en_US
dc.identifier.artn120634en_US
dc.description.validate202507 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3927, a4050-
dc.identifier.SubFormID51693, 52012-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe authors acknowledge the financial support from National Natural Science Foundation of China (52171162), Research Grants Council of Hong Kong (15227121, 15202824, C1017–21GF, and C1020–21GF), Shenzhen Science and Technology Program (JCYJ20210324142203009), RIAM Fund (P0046108), PolyU Fund (P0044243), and National Natural Science Foundation of China (52271122). APT research was conducted at the Inter-University 3D-APT Unit of City University of Hong Kong, which is supported by the CityU grants 9600011 and 9360161.en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-01-01en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-01-01
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.