Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114299
DC FieldValueLanguage
dc.contributorDepartment of Aeronautical and Aviation Engineeringen_US
dc.contributorResearch Institute for Advanced Manufacturingen_US
dc.contributorResearch Institute for Sports Science and Technologyen_US
dc.creatorZhao, Xen_US
dc.creatorYang, Yen_US
dc.creatorYin, Xen_US
dc.creatorLuo, Zen_US
dc.creatorChan, KYen_US
dc.creatorShen, Xen_US
dc.date.accessioned2025-07-23T00:52:07Z-
dc.date.available2025-07-23T00:52:07Z-
dc.identifier.issn2380-8195en_US
dc.identifier.urihttp://hdl.handle.net/10397/114299-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.titleSize-insensitive vapor diffusion enabled by additive freeze-printed aerogels for scalable desalinationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage3419en_US
dc.identifier.epage3429en_US
dc.identifier.volume10en_US
dc.identifier.issue7en_US
dc.identifier.doi10.1021/acsenergylett.5c01233en_US
dcterms.abstractPorous materials are widely used as photothermal evaporators for solar-powered desalination. However, conventional evaporators suffer a significant performance decline as size increases, limiting the scalability from laboratory to practical scales. This work addresses the fundamental limitation behind the size-performance trade-off through modeling-guided design and additive manufacturing. A coupled heat and vapor transport model reveals that vapor diffusion resistance increases with evaporator size due to thickened boundary layers. A hierarchical porous aerogel fabricated by using an additive freeze-printing technique decouples the boundary layer thickness from overall device dimension, achieving size-insensitive vapor diffusion. Unlike conventional evaporators that suffer over 40% reduction in evaporation performance with increasing size, the resulting aerogel maintains an evaporation rate above 2 kg m-2 h-1 and energy efficiency over 80%, with less than 5% reduction. Our findings provide new insights into the vapor diffusion mechanism in porous evaporators and offer a practical solution for scalable solar-driven desalination.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationACS energy letters, 11 July 2025, v. 10, no. 7, p. 3419-3429en_US
dcterms.isPartOfACS energy lettersen_US
dcterms.issued2025-07-11-
dc.identifier.scopus2-s2.0-105009611128-
dc.description.validate202507 bcwhen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000031/2025-07-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis project was financially supported by the National Natural Science Foundation of China (Grant No. 52303106), Research Grants Council of Hong Kong SAR (16200720), Environment and Conservation Fund of Hong Kong SAR (Project No. 21/2022), and the start-up fund for new recruits of PolyU (Project No. P0038855 and P0038858).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-07-02en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-07-02
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.