Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114296
PIRA download icon_1.1View/Download Full Text
Title: Effect of the photoreduction process on the self-cleaning and antibacterial activity of Au-doped TiO₂ colloids on cotton fabric
Authors: Pakdel, E 
Daoud, WA
Wang, X 
Issue Date: 15-May-2024
Source: ACS applied materials and interfaces, 15 May 2024, v. 16, no. 19, p. 25221-25235
Abstract: This study aims at understanding the effect of the photoreduction process during the synthesis of gold (Au)-doped TiO2 colloids on the conferred functionalities on cotton fabrics. TiO2/Au and TiO2/Au/SiO2 colloids were synthesized through the sol–gel method with and without undergoing the photoreduction step based on different molar ratios of Au:Ti (0.001 and 0.01) and TiO2/SiO2 (1:1 and 1:2.3). The colloids were applied to cotton fabrics, and the obtained photocatalytic self-cleaning, wet photocatalytic activity, UV protection, and antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria were investigated. The obtained results demonstrated that the photoreduction of Au weakened the self-cleaning effect and reduced the photocatalytic activity of coated fabrics. Also, an excess amount of Au deteriorated the photocatalytic activity under both UV and visible light. The most efficient self-cleaning effect was obtained on fabrics coated with a ternary TiO2/Au/SiO2 colloid containing ionic Au, where it decomposed coffee and red-wine stains after 3 h of illumination. Adding silica (SiO2) made the fabrics superhydrophilic and led to greater methylene blue (MB) dye adsorption, a faster dye degradation pace, and more efficient stain removal. Moreover, the photoreduction process affected the size of Au nanoparticles (NPs), weakened the antibacterial activity of fabrics against both types of tested bacteria, and modestly increased the UV protection. In general, the photoactivity of Au-doped colloids was influenced by the synthesis method, the ionic and metallic states of the Au dopant, the concentration of the Au dopant, and the presence and concentration of silica.
Keywords: Antibacterial textiles
Photocatalyst
Self-cleaning
TiO2
UV protection
Publisher: American Chemical Society
Journal: ACS applied materials and interfaces 
ISSN: 1944-8244
EISSN: 1944-8252
DOI: 10.1021/acsami.4c01238
Rights: © 2024 American Chemical Society
This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright © 2024 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsami.4c01238.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Pakdel_Effect_Photoreduction_Process.pdfPre-Published version3.16 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.