Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114275
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorHan, Den_US
dc.creatorZheng, Sen_US
dc.creatorShen, Gen_US
dc.creatorSong, Xen_US
dc.creatorSund , Len_US
dc.creatorHuang, Jen_US
dc.date.accessioned2025-07-22T01:34:10Z-
dc.date.available2025-07-22T01:34:10Z-
dc.identifier.issn0162-1459en_US
dc.identifier.urihttp://hdl.handle.net/10397/114275-
dc.language.isoenen_US
dc.publisherAmerican Statistical Associationen_US
dc.subjectBregman divergenceen_US
dc.subjectConditional probability densityen_US
dc.subjectDeep neural networken_US
dc.subjectMutual density ratioen_US
dc.subjectMutual informationen_US
dc.titleDeep mutual density ratio estimation with Bregman divergence and its applicationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1990en_US
dc.identifier.epage2001en_US
dc.identifier.volume120en_US
dc.identifier.issue551en_US
dc.identifier.doi10.1080/01621459.2025.2507437en_US
dcterms.abstractThis article introduces a unified approach to estimating the mutual density ratio, defined as the ratio between the joint density function and the product of the individual marginal density functions of two random vectors. It serves as a fundamental measure for quantifying the relationship between two random vectors. Our method uses the Bregman divergence to construct the objective function and leverages deep neural networks to approximate the logarithm of the mutual density ratio. We establish a non-asymptotic error bound for our estimator, achieving the optimal minimax rate of convergence under a bounded support condition. Additionally, our estimator mitigates the curse of dimensionality when the distribution is supported on a lower-dimensional manifold. We extend our results to overparameterized neural networks and the case with unbounded support. Applications of our method include conditional probability density estimation, mutual information estimation, and independence testing. Simulation studies and real data examples demonstrate the effectiveness of our approach. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationJournal of the American Statistical Association, 2025, v. 120, no. 551, p. 1990-2001en_US
dcterms.isPartOfJournal of the American Statistical Associationen_US
dcterms.issued2025-
dc.identifier.eissn1537-274Xen_US
dc.description.validate202507 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3917a-
dc.identifier.SubFormID51647-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic Universityen_US
dc.description.fundingTextNational Natural Sciecen Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-07-17en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-07-17
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.