Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114258
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.contributorResearch Institute for Advanced Manufacturingen_US
dc.contributorResearch Centre for Digital Transformation of Tourismen_US
dc.creatorRen, Cen_US
dc.creatorLi, Men_US
dc.creatorChen, Cen_US
dc.creatorGuan, Xen_US
dc.creatorHuang, GQen_US
dc.date.accessioned2025-07-21T08:14:08Z-
dc.date.available2025-07-21T08:14:08Z-
dc.identifier.issn0736-5845en_US
dc.identifier.urihttp://hdl.handle.net/10397/114258-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectAviation manufacturingen_US
dc.subjectDigital twinen_US
dc.subjectIndustrial anomaly detectionen_US
dc.subjectMulti-modalen_US
dc.titleMulti-modal digital twins for industrial anomaly detection : framework, method, and applicationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume97en_US
dc.identifier.doi10.1016/j.rcim.2025.103068en_US
dcterms.abstractAnomaly detection plays a key role in maintaining the reliable and stable operation of industrial systems, especially in high-reliability fields. Conventional single-modal data cannot provide comprehensive information about the detected object, resulting in false or missed detection. To address the challenges of complex anomaly patterns and heterogeneous data in industrial scenarios, we propose MMDT-IAD, a multi-modal digital twin (DT)-based anomaly detection framework that integrates edge–cloud collaboration. By lever- aging physical, geometric, visual, and semantic modalities, MMDT-IAD constructs a comprehensive virtual representation of monitored objects and enables real-time, scalable detection across distributed industrial environments. Next, to enable efficient fusion of heterogeneous DT modalities, we propose a One-Primary- Three-Auxiliary (1P3A) cross-modal decision fusion strategy. Finally, we apply the MMDT-IAD frame-work to the anomaly detection of aviation electrical connector pins, and present a detailed application process. The experimental results prove the effectiveness of the MMDT-IAD framework in detecting abnormal pins. Moreover, we discuss the generality of MMDT-IAD framework considering several common industrial anomalies. These results highlight the potential of MMDT-IAD framework and 1P3A method to significantly improve anomaly detection in other complex industrial scenarios.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationRobotics and computer - integrated manufacturing, Feb. 2026, v. 97, 103068en_US
dcterms.isPartOfRobotics and computer - integrated manufacturingen_US
dcterms.issued2026-02-
dc.identifier.scopus2-s2.0-105007671973-
dc.identifier.artn103068en_US
dc.description.validate202507 bcwhen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000011/2025-07-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work was partially supported by three grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. PolyU/15208824 , T32-707/22-N , C7076-22GF , and R7036-22 ), the National Natural Science Foundation of China under Grant 92167205 and 62025305 , and the Innovation and Technology Commission of the HKSAR Government through the InnoHK initiative.en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2028-02-29en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2028-02-29
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.