Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114254
DC FieldValueLanguage
dc.creatorLi, Yen_US
dc.creatorTsang, YPen_US
dc.creatorLee, CKMen_US
dc.creatorZhang, Qen_US
dc.creatorChen, ZSen_US
dc.date.accessioned2025-07-21T06:43:06Z-
dc.date.available2025-07-21T06:43:06Z-
dc.identifier.issn0967-070Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/114254-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectGeographic information system (GIS)en_US
dc.subjectRobotaxien_US
dc.subjectService areaen_US
dc.subjectSpatio-temporal multi-criteria assessmenten_US
dc.subjectStratified best-worst method (S-BWM)en_US
dc.titleService area identification for robotaxi deployment : A GIS-based spatio-temporal multi-criteria decision support frameworken_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage497en_US
dc.identifier.epage512en_US
dc.identifier.volume171en_US
dc.identifier.doi10.1016/j.tranpol.2025.07.001en_US
dcterms.abstractThe rapid commercialization of robotaxi services presents significant opportunities for market players and city managers. However, a critical challenge remains: identifying high-potential service areas within urban environments. This study addresses an important research gap by developing a dynamic spatio-temporal multi-criteria assessment framework that integrates Geographic Information Systems (GIS) and the Stratified Best-Worst Method (S-BWM) for robotaxi service area identification. The framework serves as a crucial initial planning tool for identifying candidate zones prior to detailed feasibility studies, thereby filling a critical gap in the literature. Through an empirical application in Wuhan, an emerging hub for commercial robotaxi services in China, the framework demonstrates its practical applicability. A comparative analysis reveals that several existing service areas in Wuhan fall within zones deemed unsuitable based on GIS assessment criteria, highlighting opportunities for strategic improvement. The findings provide valuable insights into the integration of robotaxis within urban transit networks. By incorporating spatio-temporal interaction maps and stratified decision-making methods, this study develops a strategic decision-support tool to assist stakeholders in operational management and policy formulation during the initial planning phase.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationTransport policy, Sept. 2025, v. 171, p. 497-512en_US
dcterms.isPartOfTransport policyen_US
dcterms.issued2025-09-
dc.identifier.scopus2-s2.0-105009830664-
dc.identifier.eissn1879-310Xen_US
dc.description.validate202507 bcwhen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000001/2025-07-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe authors would like to thank the Research and Innovation Office of the Hong Kong Polytechnic University for supporting the project (Project Code: RKQY). This research is funded by the Laboratory for Artificial Intelligence in Design, Hong Kong (Project Code: RP2-1) under the InnoHK Research Clusters, Hong Kong Special Administrative Region Government. This research is also partly supported by the National Nature Science Foundation of China (Grant no 72171182).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-09-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-09-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.