Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114228
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorWu, Sen_US
dc.creatorZhao, Qen_US
dc.creatorYang, Hen_US
dc.creatorGe, Hen_US
dc.date.accessioned2025-07-18T07:19:04Z-
dc.date.available2025-07-18T07:19:04Z-
dc.identifier.issn0013-7952en_US
dc.identifier.urihttp://hdl.handle.net/10397/114228-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.subjectAE waveformsen_US
dc.subjectShaleen_US
dc.subjectTensile-shear cracksen_US
dc.subjectTight-sandstoneen_US
dc.titleCombining acoustic emission and unsupervised machine learning to investigate microscopic fracturing in tight reservoir rocken_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume347en_US
dc.identifier.doi10.1016/j.enggeo.2025.107939en_US
dcterms.abstractWe use the acoustic emission (AE) and unsupervised machine learning to investigate the influence of bedding structures on the tight rock fracturing at the microscale, aiming to uncover the macro failure mechanisms relevant to oil and gas production engineering. We compared the AE characteristics of typical tight rocks, specifically tight sandstone and shale, under uniaxial loading both perpendicular and parallel to the bedding structure. Additionally, we applied unsupervised machine learning to cluster AE waveforms to analyze microscopic fracturing. The clustering results, constrained using the elbow method and silhouette score, revealed that a consistent number of three clusters was suitable for categorizing all samples. We then used the classification results, together with other AE parameters, to interpret the fractures influenced by bedding structures. Our results revealed that AE waveforms could be classified into three clusters, corresponding to microscopic fracturing, including tensile, shear, and mixed cracking types. Cracks formed under low-stress conditions tend to exhibit tensile failure modes, transitioning into shear fracturing before reaching peak compressive stress. Tight sandstones exhibited higher strength in their bedding structures compared to shale, possibly due to differences in pre-existing microcrack structure characteristics. This study advances our knowledge of tight reservoir rock failure mechanisms and provides valuable guidance for tight reservoir development engineering.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEngineering geology, 13 Mar. 2025, v. 347, 107939en_US
dcterms.isPartOfEngineering geologyen_US
dcterms.issued2025-03-13-
dc.identifier.scopus2-s2.0-85216108458-
dc.identifier.eissn1872-6917en_US
dc.identifier.artn107939en_US
dc.description.validate202507 bcch-
dc.identifier.FolderNumbera3904-
dc.identifier.SubFormID51607-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-03-13en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-03-13
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

14
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.