Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114205
DC FieldValueLanguage
dc.contributorDepartment of Data Science and Artificial Intelligenceen_US
dc.creatorLan, Den_US
dc.creatorSun, Cen_US
dc.creatorDong, Xen_US
dc.creatorQiu, Pen_US
dc.creatorGong, Yen_US
dc.creatorLiu, Xen_US
dc.creatorFournier-Viger, Pen_US
dc.creatorZhang, Cen_US
dc.date.accessioned2025-07-15T08:45:45Z-
dc.date.available2025-07-15T08:45:45Z-
dc.identifier.issn0306-4573en_US
dc.identifier.urihttp://hdl.handle.net/10397/114205-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectNegative sequential patternen_US
dc.subjectNonoverlappingen_US
dc.subjectSequential pattern miningen_US
dc.subjectTop-K repetitive negative sequential patternsen_US
dc.titleTK-RNSP : efficient top-k repetitive negative sequential pattern miningen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume62en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1016/j.ipm.2025.104077en_US
dcterms.abstractRepetitive Negative Sequential Patterns (RNSPs) can provide critical insights into the importance of sequences. However, most current RNSP mining methods require users to set an appropriate support threshold to obtain the expected number of patterns, which is a very difficult task for the users without prior experience. To address this issue, we propose a new algorithm, TK-RNSP, to mine the Top-K RNSPs with the highest support, without the need to set a support threshold. In detail, we achieve a significant breakthrough by proposing a series of definitions that enable RNSP mining to satisfy anti-monotonicity. Then, we propose a bitmap-based Depth-First Backtracking Search (DFBS) strategy to decrease the heavy computational burden by increasing the speed of support calculation. Finally, we propose the algorithm TK-RNSP in an one-stage process, which can effectively reduce the generation of unnecessary patterns and improve computational efficiency comparing to those two-stage process algorithms. To the best of our knowledge, TK-RNSP is the first algorithm to mine Top-K RNSPs. Extensive experiments on eight datasets show that TK-RNSP has better flexibility and efficiency to mine Top-K RNSPs.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationInformation processing and management, May 2025, v. 62, no. 3, 104077en_US
dcterms.isPartOfInformation processing and managementen_US
dcterms.issued2025-05-
dc.identifier.scopus2-s2.0-85216539109-
dc.identifier.artn104077en_US
dc.description.validate202507 bcwhen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3866-
dc.identifier.SubFormID51466-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-05-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-05-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

1
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.