Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114187
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.contributorResearch Institute for Smart Energy-
dc.creatorLiu, C-
dc.creatorQiao, Z-
dc.creatorLi, C-
dc.creatorSchönlieb, CB-
dc.date.accessioned2025-07-15T08:44:06Z-
dc.date.available2025-07-15T08:44:06Z-
dc.identifier.urihttp://hdl.handle.net/10397/114187-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2025 Society for Industrial and Applied Mathematicsen_US
dc.rightsCopyright © by SIAM. Unauthorized reproduction of this article is prohibited.en_US
dc.rightsThe following publication Liu, C., Qiao, Z., Li, C., & Schönlieb, C.-B. (2025). Inverse Evolution Layers: Physics-Informed Regularizers for Image Segmentation. SIAM Journal on Mathematics of Data Science, 7(1), 55-85 is available at https://doi.org/10.1137/24M1633662.en_US
dc.subjectImage segmentationen_US
dc.subjectInverse evolution layersen_US
dc.subjectNoisy labelen_US
dc.subjectPhysical-informed regularizersen_US
dc.titleInverse evolution layers : physics-informed regularizers for image segmentationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage55-
dc.identifier.epage85-
dc.identifier.volume7-
dc.identifier.issue1-
dc.identifier.doi10.1137/24M1633662-
dcterms.abstractTraditional image processing methods employing PDEs offer a multitude of meaningful regularizers along with valuable theoretical foundations for a wide range of image-related tasks. This makes their integration into neural networks a promising avenue. In this paper, we introduce a novel regularization approach inspired by the reverse process of PDE-based evolution models. Specifically, we propose inverse evolution layers (IELs), which serve as bad property amplifiers to penalize neural networks of which outputs have undesired characteristics. Using IELs, one can achieve specific regularization objectives and endow neural network outputs with corresponding properties of the PDE models. Our experiments, focusing on semantic segmentation tasks using heat-diffusion IELs, demonstrate their effectiveness in mitigating noisy label effects. Additionally, we develop curve-motion IELs to enforce convex shape regularization in neural network–based segmentation models for preventing the generation of concave outputs. Our results indicate that IELs may offer a potential regularization mechanism for addressing challenges related to noisy labels.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on mathematics of data science, 2025, v. 7, no. 1, p. 55-85-
dcterms.isPartOfSIAM journal on mathematics of data science-
dcterms.issued2025-
dc.identifier.eissn2577-0187-
dc.description.validate202507 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3885ben_US
dc.identifier.SubFormID51552en_US
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
51552_24m1633662.pdf46.65 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.