Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114186
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.contributorResearch Institute for Smart Energy-
dc.creatorHou, D-
dc.creatorLi, X-
dc.creatorQiao, Z-
dc.creatorZheng, N-
dc.date.accessioned2025-07-15T08:44:05Z-
dc.date.available2025-07-15T08:44:05Z-
dc.identifier.issn0036-1429-
dc.identifier.urihttp://hdl.handle.net/10397/114186-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2025 Society for Industrial and Applied Mathematicsen_US
dc.rightsCopyright © by SIAM. Unauthorized reproduction of this article is prohibited.en_US
dc.rightsThe following publication Hou, D., Li, X., Qiao, Z., & Zheng, N. (2025). Energy Stable and Maximum Bound Principle Preserving Schemes for the Q-Tensor Flow of Liquid Crystals. SIAM Journal on Numerical Analysis, 63(2), 854-880 is available at https://doi.org/10.1137/23M1598866.en_US
dc.subjectEnergy stabilityen_US
dc.subjectError estimatesen_US
dc.subjectLiquid crystalen_US
dc.subjectMaximum bound principleen_US
dc.subjectQ-tensoren_US
dc.titleEnergy stable and maximum bound principle preserving schemes for the Q-tensor flow of liquid crystalsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume187-
dc.identifier.doi10.1137/23M1598866-
dcterms.abstractIn this paper, we propose two efficient fully discrete schemes for Q-tensor flow of liquid crystals by using the first- and second-order stabilized exponential scalar auxiliary variable (sESAV) approach in time and the finite difference method for spatial discretization. The modified discrete energy dissipation laws are unconditionally satisfied for both two constructed schemes. A particular feature is that, for two-dimensional (2D) and a kind of three-dimensional (3D) Q-tensor flow, the unconditional maximum bound principle (MBP) preservation of the constructed first-order scheme is successfully established, and the proposed second-order scheme preserves the discrete MBP property with a mild restriction on the time-step sizes. Furthermore, we rigorously derive the corresponding error estimates for the fully discrete second-order schemes by using the built-in stability results. Finally, various numerical examples validating the theoretical results, such as the orientation of liquid crystal in 2D and 3D, are presented for the constructed schemes.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on numerical analysis, 2025, v. 187, 107277-
dcterms.isPartOfSIAM journal on numerical analysis-
dcterms.issued2025-
dc.identifier.scopus2-s2.0-105005198949-
dc.identifier.eissn1095-7170-
dc.identifier.artn107277-
dc.description.validate202507 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3885ben_US
dc.identifier.SubFormID51547en_US
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
23m1598866.pdf15.56 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.