Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114161
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineering-
dc.creatorLi, Xen_US
dc.creatorMak, CMen_US
dc.creatorXue, Pen_US
dc.creatorXue, Ren_US
dc.creatorWong, HMen_US
dc.date.accessioned2025-07-15T08:42:15Z-
dc.date.available2025-07-15T08:42:15Z-
dc.identifier.issn0378-7788en_US
dc.identifier.urihttp://hdl.handle.net/10397/114161-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.subjectHeat wavesen_US
dc.subjectLocalized sensationen_US
dc.subjectPersonalized comfort systemen_US
dc.subjectPhase change materialen_US
dc.subjectThermal manikinen_US
dc.subjectThermal performanceen_US
dc.titleUnraveling the applicability and thermal performance of PCM-impregnated wood in personalized comfort systems : thermal manikin verificationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume344en_US
dc.identifier.doi10.1016/j.enbuild.2025.116028en_US
dcterms.abstractPersonalized comfort systems compared to conventional whole-space heating/cooling can simultaneously target individual requirements and reduce the building energy consumption. Renewable wooden furniture in interior spaces can influence human emotional perception and even thermal exchange, while the impregnation of the phase-change materials (PCM) can further improve their thermal regulation characteristics. However, the applicability of PCM-impregnated wood in personalized comfort systems and its performance on the contact skin temperature is not certain in the human microenvironment, especially when confronted with heat waves. The research aims to bridge material science with human micro-scale thermophysiology. After verifying the microstructure and morphology, spectroscopy test, latent heat, and infrared thermal imaging, the thermal manikin verification was conducted to record the fluctuations in skin temperature, heat loss, and corresponding thermal sensation. A latent heat of 99.1J/g for the PCM-wood composite can account for 42.9 % of the thermal capacity of the PCM. The surface temperature analysis from the infrared camera justified the time-lag effect (100min) and the peak temperature reduction (1.3-2.5°C). The manikin forearm in contact with the PCM-wood composite can extend the localized neutral sensation for around 17–34 min, with a 72 % increase in energy performance (4.3kJ). Composites with compensated PCM leakage can be prospectively used in personalized comfort systems. These findings can help regulate the human micro-thermal environment, further contributing to reducing building energy consumption.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEnergy and buildings, 1 Oct. 2025, v. 344, 116028en_US
dcterms.isPartOfEnergy and buildingsen_US
dcterms.issued2025-10-01-
dc.identifier.scopus2-s2.0-105007930227-
dc.identifier.eissn1872-6178en_US
dc.identifier.artn116028en_US
dc.description.validate202507 bcch-
dc.identifier.FolderNumbera3879a-
dc.identifier.SubFormID51503-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-10-01en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-10-01
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.