Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114136
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Optometry-
dc.creatorHuang, Yen_US
dc.creatorSyed, MGen_US
dc.creatorChen, Ren_US
dc.creatorLi, Cen_US
dc.creatorShang, Xen_US
dc.creatorWang, Wen_US
dc.creatorZhang, Xen_US
dc.creatorZhang, Xen_US
dc.creatorTang, Sen_US
dc.creatorLiu, Jen_US
dc.creatorLiu, Sen_US
dc.creatorSrinivasan, Sen_US
dc.creatorHu, Yen_US
dc.creatorMookiah, MRKen_US
dc.creatorWang, Hen_US
dc.creatorTrucco, Een_US
dc.creatorYu, Hen_US
dc.creatorPalmer, Cen_US
dc.creatorZhu, Zen_US
dc.creatorDoney, ASFen_US
dc.creatorHe, Men_US
dc.date.accessioned2025-07-15T08:41:48Z-
dc.date.available2025-07-15T08:41:48Z-
dc.identifier.issn2509-2715en_US
dc.identifier.urihttp://hdl.handle.net/10397/114136-
dc.language.isoenen_US
dc.publisherSpringer Chamen_US
dc.rights© The Author(s) 2025en_US
dc.rightsOpen Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.en_US
dc.rightsThe following publication Huang, Y., Syed, M.G., Chen, R. et al. Genomic determinants of biological age estimated by deep learning applied to retinal images. GeroScience 47, 2613–2629 (2025) is available at https://doi.org/10.1007/s11357-024-01481-w.en_US
dc.subjectBiological ageen_US
dc.subjectGenome-wide association analysisen_US
dc.subjectMendelian randomizationen_US
dc.subjectRetinal ageen_US
dc.titleGenomic determinants of biological age estimated by deep learning applied to retinal imagesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2613en_US
dc.identifier.epage2629en_US
dc.identifier.volume47en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1007/s11357-024-01481-wen_US
dcterms.abstractWith the development of deep learning (DL) techniques, there has been a successful application of this approach to determine biological age from latent information contained in retinal images. Retinal age gap (RAG) defined as the difference between chronological age and predicted retinal age has been established previously to predict the age-related disease. In this study, we performed discovery genome-wide association analysis (GWAS) on the RAG using the 31,271 UK Biobank participants and replicated our findings in 8034 GoDARTS participants. The genetic correlation between RAGs predicted from the two cohorts was 0.67 (P = 0.021). After meta-analysis, we found 13 RAG loci which might be related to retinal vessel density and other aging processes. The SNP-wide heritability (h2) of RAG was 0.15. Meanwhile, by performing Mendelian randomization analysis, we found that glycated hemoglobin, inflammation hemocytes, and anemia might be associated with accelerated retinal aging. Our study explored the biological implications and molecular-level mechanism of RAG, which might enable causal inference of the aging process as well as provide potential pharmaceutical intervention targets for further treatment.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationGeroScience, Apr. 2025, v. 47, no. 2, p. 2613-2629en_US
dcterms.isPartOfGeroScienceen_US
dcterms.issued2025-04-
dc.identifier.scopus2-s2.0-85217204873-
dc.identifier.eissn2509-2723en_US
dc.description.validate202507 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3849c, a3849d-
dc.identifier.SubFormID51365, 51375-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNSFC Young Scientist Funden_US
dc.description.fundingTextNSFC Incubation Project of Guangdong Provincial People’s Hospitalen_US
dc.description.fundingTextResearch Foundation of Medical Science and Technology of Guangdong Provinceen_US
dc.description.fundingTextScience and Technology Program of Guangzhou, Chinaen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.fundingTextOutstanding Young Talent Trainee Program of Guangdong Provincial People’s Hospitalen_US
dc.description.fundingTextGuangdong Provincial People’s Hospital Scientifc Research Funds for Leading Medical Talents and Distinguished Young Scholars in Guangdong Provinceen_US
dc.description.fundingTextTalent Introduction Fund of Guangdong Provincial People’s Hospitalen_US
dc.description.fundingTextGlobal STEM Professorship Schemeen_US
dc.description.fundingTextResearch Matching Grant Schemeen_US
dc.description.fundingTextPolyU—Rohto Centre of Research Excellence for Eye Careen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
s11357-024-01481-w.pdf3.17 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

1
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.