Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114102
DC FieldValueLanguage
dc.contributorDepartment of Computing-
dc.contributorDepartment of Data Science and Artificial Intelligence-
dc.creatorChen, Men_US
dc.creatorFeng, Cen_US
dc.creatorCheng, Ren_US
dc.date.accessioned2025-07-11T09:11:38Z-
dc.date.available2025-07-11T09:11:38Z-
dc.identifier.issn1089-778Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/114102-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.subjectDifferential Evolutionen_US
dc.subjectGPU Computingen_US
dc.subjectMeta Evolutionary Algorithmen_US
dc.titleMetaDE : evolving differential evolution by differential evolutionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.epage en_US
dc.identifier.doi10.1109/TEVC.2025.3541587en_US
dcterms.abstractAs a cornerstone in the Evolutionary Computation (EC) domain, Differential Evolution (DE) is known for its simplicity and effectiveness in handling challenging black-box optimization problems. While the advantages of DE are well-recognized, achieving peak performance heavily depends on its hyperparameters such as the mutation factor, crossover probability, and the selection of specific DE strategies. Traditional approaches to this hyperparameter dilemma have leaned towards parameter tuning or adaptive mechanisms. However, identifying the optimal settings tailored for specific problems remains a persistent challenge. In response, we introduce MetaDE, an approach that evolves DE's intrinsic hyperparameters and strategies using DE itself at a meta-level. A pivotal aspect of MetaDE is a specialized parameterization technique, which endows it with the capability to dynamically modify DE's parameters and strategies throughout the evolutionary process. To augment computational efficiency, MetaDE incorporates a design that leverages parallel processing through a GPU-accelerated computing framework. Within such a framework, DE is not just a solver but also an optimizer for its own configurations, thus streamlining the process of hyperparameter optimization and problem-solving into a cohesive and automated workflow. Extensive evaluations on the CEC2022 benchmark suite demonstrate MetaDE's promising performance. Moreover, when applied to robot control via evolutionary reinforcement learning, MetaDE also demonstrates promising performance.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationIEEE transactions on evolutionary computation, Date of Publication: 13 February 2025, Early Access, https://doi.org/10.1109/TEVC.2025.3541587en_US
dcterms.isPartOfIEEE transactions on evolutionary computationen_US
dcterms.issued2025-
dc.identifier.scopus2-s2.0-85217917240-
dc.identifier.eissn1941-0026en_US
dc.description.validate202507 bcch-
dc.identifier.FolderNumbera3857a-
dc.identifier.SubFormID51446-
dc.description.fundingSourceSelf-fundeden_US
dc.description.fundingText en_US
dc.description.pubStatusEarly releaseen_US
dc.date.embargo0000-00-00 (to be updated)en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 0000-00-00 (to be updated)
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.