Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114099
DC FieldValueLanguage
dc.contributorDepartment of Computing-
dc.creatorHuang, B-
dc.creatorCheng, R-
dc.creatorLi, Z-
dc.creatorJin, Y-
dc.creatorTan, KC-
dc.date.accessioned2025-07-11T09:11:37Z-
dc.date.available2025-07-11T09:11:37Z-
dc.identifier.issn1089-778X-
dc.identifier.urihttp://hdl.handle.net/10397/114099-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.subjectComputational modelingen_US
dc.subjectDistributed Computingen_US
dc.subjectEvolutionary computationen_US
dc.subjectEvolutionary Reinforcement Learningen_US
dc.subjectGPU Accelerationen_US
dc.subjectLibrariesen_US
dc.subjectNeuroevolutionen_US
dc.subjectPythonen_US
dc.subjectScalable Evolutionary Computationen_US
dc.subjectSociologyen_US
dc.subjectStatisticsen_US
dc.subjectTask analysisen_US
dc.titleEvoX : a distributed gpu-accelerated framework for scalable evolutionary computationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.doi10.1109/TEVC.2024.3388550-
dcterms.abstractInspired by natural evolutionary processes, Evolutionary Computation (EC) has established itself as a cornerstone of Artificial Intelligence. Recently, with the surge in data-intensive applications and large-scale complex systems, the demand for scalable EC solutions has grown significantly. However, most existing EC infrastructures fall short of catering to the heightened demands of large-scale problem solving. While the advent of some pioneering GPU-accelerated EC libraries is a step forward, they also grapple with some limitations, particularly in terms of flexibility and architectural robustness. In response, we introduce EvoX: a computing framework tailored for automated, distributed, and heterogeneous execution of EC algorithms. At the core of EvoX lies a unique programming model to streamline the development of parallelizable EC algorithms, complemented by a computation model specifically optimized for distributed GPU acceleration. Building upon this foundation, we have crafted an extensive library comprising a wide spectrum of 50+ EC algorithms for both single-and multi-objective optimization. Furthermore, the library offers comprehensive support for a diverse set of benchmark problems, ranging from dozens of numerical test functions to hundreds of reinforcement learning tasks. Through extensive experiments across a range of problem scenarios and hardware configurations, EvoX demonstrates robust system and model performances. EvoX is open-source and accessible at: https://github.com/EMI-Group/EvoX. IEEE-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationIEEE transactions on evolutionary computation, Date of Publication: 15 April 2024, Early Access, https://doi.org/10.1109/TEVC.2024.3388550-
dcterms.isPartOfIEEE transactions on evolutionary computation-
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85190733577-
dc.identifier.eissn1941-0026-
dc.description.validate202507 bcch-
dc.identifier.FolderNumbera3857aen_US
dc.identifier.SubFormID51441en_US
dc.description.fundingSourceSelf-fundeden_US
dc.description.fundingText en_US
dc.description.pubStatusEarly releaseen_US
dc.date.embargo0000-00-00 (to be updated)en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 0000-00-00 (to be updated)
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.