Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114099
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computingen_US
dc.creatorHuang, Ben_US
dc.creatorCheng, Ren_US
dc.creatorLi, Zen_US
dc.creatorJin, Yen_US
dc.creatorTan, KCen_US
dc.date.accessioned2025-07-11T09:11:37Z-
dc.date.available2025-07-11T09:11:37Z-
dc.identifier.issn1089-778Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/114099-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication B. Huang, R. Cheng, Z. Li, Y. Jin and K. C. Tan, "EvoX: A Distributed GPU-Accelerated Framework for Scalable Evolutionary Computation," in IEEE Transactions on Evolutionary Computation, vol. 29, no. 5, pp. 1649-1662, Oct. 2025 is available at https://doi.org/10.1109/TEVC.2024.3388550.en_US
dc.subjectComputational modelingen_US
dc.subjectDistributed Computingen_US
dc.subjectEvolutionary computationen_US
dc.subjectEvolutionary Reinforcement Learningen_US
dc.subjectGPU Accelerationen_US
dc.subjectLibrariesen_US
dc.subjectNeuroevolutionen_US
dc.subjectPythonen_US
dc.subjectScalable Evolutionary Computationen_US
dc.subjectSociologyen_US
dc.subjectStatisticsen_US
dc.subjectTask analysisen_US
dc.titleEvoX : a distributed gpu-accelerated framework for scalable evolutionary computationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1649en_US
dc.identifier.epage1662en_US
dc.identifier.volume29en_US
dc.identifier.issue5en_US
dc.identifier.doi10.1109/TEVC.2024.3388550en_US
dcterms.abstractInspired by natural evolutionary processes, Evolutionary Computation (EC) has established itself as a cornerstone of Artificial Intelligence. Recently, with the surge in data-intensive applications and large-scale complex systems, the demand for scalable EC solutions has grown significantly. However, most existing EC infrastructures fall short of catering to the heightened demands of large-scale problem solving. While the advent of some pioneering GPU-accelerated EC libraries is a step forward, they also grapple with some limitations, particularly in terms of flexibility and architectural robustness. In response, we introduce EvoX: a computing framework tailored for automated, distributed, and heterogeneous execution of EC algorithms. At the core of EvoX lies a unique programming model to streamline the development of parallelizable EC algorithms, complemented by a computation model specifically optimized for distributed GPU acceleration. Building upon this foundation, we have crafted an extensive library comprising a wide spectrum of 50+ EC algorithms for both single-and multi-objective optimization. Furthermore, the library offers comprehensive support for a diverse set of benchmark problems, ranging from dozens of numerical test functions to hundreds of reinforcement learning tasks. Through extensive experiments across a range of problem scenarios and hardware configurations, EvoX demonstrates robust system and model performances. EvoX is open-source and accessible at: https://github.com/EMI-Group/EvoX. IEEEen_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE transactions on evolutionary computation, Oct. 2025, v. 29, no. 5, p. 1649-1662en_US
dcterms.isPartOfIEEE transactions on evolutionary computationen_US
dcterms.issued2024-10-
dc.identifier.scopus2-s2.0-85190733577-
dc.identifier.eissn1941-0026en_US
dc.description.validate202507 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3857a-
dc.identifier.SubFormID51441-
dc.description.fundingSourceSelf-fundeden_US
dc.description.fundingText en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Huang_EvoX_Distributed_GPU-Accelerated.pdfPre-Published version1.59 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

23
Citations as of Oct 17, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.