Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114094
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Management-
dc.creatorLi, H-
dc.creatorGuo, H-
dc.creatorWang, J-
dc.creatorWang, Y-
dc.creatorWu, C-
dc.date.accessioned2025-07-11T09:11:35Z-
dc.date.available2025-07-11T09:11:35Z-
dc.identifier.issn0160-7383-
dc.identifier.urihttp://hdl.handle.net/10397/114094-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectCombination forecastsen_US
dc.subjectMulti-objective optimizationen_US
dc.subjectSwarm intelligence optimization algorithmen_US
dc.subjectTourism demand forecastingen_US
dc.titleTourism combination forecasting with swarm intelligenceen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume111-
dc.identifier.doi10.1016/j.annals.2025.103932-
dcterms.abstractCombination forecasting is an effective method for improving the accuracy of tourism demand. This study proposes an innovative combination strategy based on a multi-objective swarm intelligence optimization algorithm and, for the first time, examines whether and how this algorithm can enhance the performance of tourism demand combination forecasting. An empirical study conducted under several scenarios demonstrates that the proposed combination strategy enhances the interaction among single forecasts, leading to improved forecast accuracy and stability compared with traditional combination methods. The model remained effective even during the COVID-19 pandemic. The findings have a positive impact on predictive research, offering new insights and methodologies for tourism demand modeling.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAnnals of tourism research, Mar. 2025, v. 111, 103932-
dcterms.isPartOfAnnals of tourism research-
dcterms.issued2025-03-
dc.identifier.scopus2-s2.0-85218873012-
dc.identifier.eissn1873-7722-
dc.identifier.artn103932-
dc.description.validate202507 bcch-
dc.identifier.FolderNumbera3856aen_US
dc.identifier.SubFormID51434en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Scholars Program from The Society of Hong Kong Scholars (Project No. G-YZ7R)en_US
dc.description.fundingTextThe Major Program of National Social Science Foundation of China (Grant No. 17ZDA093)en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2028-03-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2028-03-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.