Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114093
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Management-
dc.creatorLi, H-
dc.creatorZhou, A-
dc.creatorZheng, XK-
dc.creatorXu, J-
dc.creatorZhang, J-
dc.date.accessioned2025-07-11T09:11:34Z-
dc.date.available2025-07-11T09:11:34Z-
dc.identifier.issn0261-5177-
dc.identifier.urihttp://hdl.handle.net/10397/114093-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectMachine learningen_US
dc.subjectRestauranten_US
dc.subjectReview sourceen_US
dc.subjectReview varianceen_US
dc.subjectSurvival predictionen_US
dc.titleRestaurant survival prediction using machine learning : do the variance and sources of customers’ online reviews matter?en_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume107-
dc.identifier.doi10.1016/j.tourman.2024.105038-
dcterms.abstractRestaurant constitutes an essential part of the tourism industry. In times of uncertainty and transition, restaurant survival prediction is vital for deepening organizations' understanding of business performance and facilitating decisions. By tapping into online reviews, a prevalent form of user-generated content, this study identifies review variance as a leading indicator of restaurants’ survival drawing from data on 2838 restaurants in Boston and their corresponding reviews. Machine learning–based survival analysis shows that models integrating fine-grained review variance (i.e., review rating variance, overall review sentiment variance, and fine-grained review sentiment variance) outperform models that do not account for these factors in restaurant survival prediction before and during the pandemic. Furthermore, in most cases, expert reviews hold stronger predictive power for pre-pandemic restaurant survival than non-expert and all forms of reviews. This study contributes to the literature on business survival prediction and guides industry practitioners in monitoring and enhancing their enterprises.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationTourism management, Apr. 2025, v. 107, 105038-
dcterms.isPartOfTourism management-
dcterms.issued2025-04-
dc.identifier.scopus2-s2.0-85203644469-
dc.identifier.eissn1879-3193-
dc.identifier.artn105038-
dc.description.validate202507 bcch-
dc.identifier.FolderNumbera3856aen_US
dc.identifier.SubFormID51432en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe National Natural Science Foundation of China (No. 72474189; 71901053)en_US
dc.description.fundingTextThe Hong Kong Polytechnic University SHTM Interdisciplinary Large Grant (No. 4-ZZNQ)en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2028-04-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2028-04-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.