Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114090
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Management-
dc.creatorXu, J-
dc.creatorZhang, W-
dc.creatorLi, H-
dc.creatorZheng, XK-
dc.creatorZhang, J-
dc.date.accessioned2025-07-11T09:11:33Z-
dc.date.available2025-07-11T09:11:33Z-
dc.identifier.issn0160-7383-
dc.identifier.urihttp://hdl.handle.net/10397/114090-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectHotel demand forecastingen_US
dc.subjectMultimodal dataen_US
dc.subjectOnline reviewen_US
dc.subjectUser-generated photosen_US
dc.titleUser-generated photos in hotel demand forecastingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume108-
dc.identifier.doi10.1016/j.annals.2024.103820-
dcterms.abstractUser-generated content has become an invaluable resource for researchers in hospitality and tourism, especially regarding sales and demand forecasting. Some scholars have analyzed textual data and sentiment information; however, few studies have addressed roles of user-generated photos in hotel demand prediction. This study fills this void by examining the effectiveness of various photo features (i.e., topics and sentiments) for hotel demand forecasting. Results demonstrate the superiority of photo topic features over sentiment features in enhancing demand prediction. Forecasting accuracy is further improved after integrating a combination of photo topic and sentiment features. Moreover, user-generated photos elevate the accuracy of daily demand forecasting for different hotels. This study contributes to the literature on hotel demand forecasting using Internet multimodal data.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAnnals of tourism research, Sept 2024, v. 108, 103820-
dcterms.isPartOfAnnals of tourism research-
dcterms.issued2024-09-
dc.identifier.scopus2-s2.0-85201218223-
dc.identifier.eissn1873-7722-
dc.identifier.artn103820-
dc.description.validate202507 bcch-
dc.identifier.FolderNumbera3856aen_US
dc.identifier.SubFormID51424en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe National Natural Science Foundation of China (Nos. 71872034; 71901053)en_US
dc.description.fundingTextThe Hong Kong Polytechnic University Departmental General Research Fund (No. G-UAPF)en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-09-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-09-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

7
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.