Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114081
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorLi, Hen_US
dc.creatorWang, Jen_US
dc.creatorZhao, Jen_US
dc.creatorLi, Jen_US
dc.creatorFu, MWen_US
dc.date.accessioned2025-07-11T09:11:28Z-
dc.date.available2025-07-11T09:11:28Z-
dc.identifier.issn1359-6454en_US
dc.identifier.urihttp://hdl.handle.net/10397/114081-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectHigh-entropy alloyen_US
dc.subjectL1<sub>2</sub> precipitatesen_US
dc.subjectMicrobandsen_US
dc.subjectPhase transformationen_US
dc.subjectSuperlattice intrinsic stacking faultsen_US
dc.titlePhase transformation within dynamically refined microbands inducing ultrahigh and sustained strain hardening in high-entropy alloys containing L12 precipitatesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume289en_US
dc.identifier.doi10.1016/j.actamat.2025.120930en_US
dcterms.abstractMetallic materials exhibiting ultrahigh strength coupled with exceptional ductility play a pivotal role in advanced industries, yet enhancing strength typically sacrifices strain hardening and ductility. This study presents a strategy that activated an innovative deformation mechanism to overcome the long-standing trade-off between strength and ductility in an L12-strengthened Al5Ti8(FeCoNi)86.9B0.1 high-entropy alloy. After aging at 765 °C for 4 hours, the alloy achieved a yield strength of 1227 MPa, an ultimate tensile strength of 1742 MPa, and an elongation of 39.9%, attributed to the ultrahigh and sustained strain hardening induced by phase transformation within dynamically refined microbands during deformation. Our findings indicated that FCC→BCC transformation within the microbands was more favorable in an FCC matrix with a larger width. Furthermore, a high density of superlattice intrinsic stacking faults and Lomer-Cottrell locks in L12 phase were formed, leading to additional strain hardening of the alloy. The synergistic interaction between phase transformation and microband formation offers a promising approach for designing novel high-performance alloys with exceptional strength and ductility.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationActa materialia, 1 May 2025, v. 289, 120930en_US
dcterms.isPartOfActa materialiaen_US
dcterms.issued2025-05-01-
dc.identifier.scopus2-s2.0-105000466067-
dc.identifier.eissn1873-2453en_US
dc.identifier.artn120930en_US
dc.description.validate202507 bcch-
dc.identifier.FolderNumbera3852b-
dc.identifier.SubFormID51425-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextKey Research and Development Program of Shaanxien_US
dc.description.fundingTextHong Kong Polytechnic Universityen_US
dc.description.fundingTextState Key Laboratory of Solidification Processing in NWPUen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-05-01en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-05-01
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

5
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.