Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114079
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorCai, W-
dc.creatorSun, C-
dc.creatorZhang, H-
dc.creatorQian, L-
dc.creatorMeng, L-
dc.creatorFu, MW-
dc.date.accessioned2025-07-11T09:11:27Z-
dc.date.available2025-07-11T09:11:27Z-
dc.identifier.issn0264-1275-
dc.identifier.urihttp://hdl.handle.net/10397/114079-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Cai, W., Sun, C., Zhang, H., Qian, L., Meng, L., & Fu, M. W. (2025). Modeling plastic deformation of TWIP steel using cohesive zone and crystal plasticity finite element. Materials & Design, 252, 113785 is available at https://doi.org/10.1016/j.matdes.2025.113785.en_US
dc.subjectCohesive zone modelen_US
dc.subjectCrystal plasticityen_US
dc.subjectFine and ultrafine grainen_US
dc.subjectGeometrically necessary dislocation densityen_US
dc.subjectTWIP steelen_US
dc.titleModeling plastic deformation of TWIP steel using cohesive zone and crystal plasticity finite elementen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume252-
dc.identifier.doi10.1016/j.matdes.2025.113785-
dcterms.abstractIn this research, the cohesive zone model-crystal plasticity finite element (CZM-CPFE) method was applied to reveal the influence mechanism of grain boundaries (GBs) and grains on the mechanical properties of fine/ultrafine grained TWIP steels. The reliability and efficiency of this method were verified via corroborating with in-situ SEM tensile tests and EBSD/TEM characterisation. When the average grain size was refined from 8.49 to 0.70 μm, the yield stress increased from 181 to 317 MPa and the ultimate tensile strength from 868 to 1004 MPa with little loss of UE, which was successfully predicted by the CZM-CPFE method. Also, the neighbouring grain model revealed that stress concentrations are pronounced near GBs with high misorientation angle due to the dislocation motion and twin growth hindered by GBs. Furthermore, the simulation and experimental results indicated that the critical resolved shear stress (CRSS) for twinning increased to 202 MPa for average grain size reduction to 0.70 μm, which was much higher than the 138.5 MPa for slip, making twin activation more difficult. The application of this work in steels with moderate grain sizes can facilitate understanding of the evolution of the slip and twins and the strain hardening.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMaterials and design, Apr. 2025, v. 252, 113785-
dcterms.isPartOfMaterials and design-
dcterms.issued2025-04-
dc.identifier.scopus2-s2.0-85219494861-
dc.identifier.eissn1873-4197-
dc.identifier.artn113785-
dc.description.validate202507 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3852ben_US
dc.identifier.SubFormID51422en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.fundingTextHong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S0264127525002059-main.pdf37.54 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

1
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.