Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114072
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorHu, Den_US
dc.creatorWang, Jen_US
dc.creatorLiao, Zen_US
dc.creatorFu, MWen_US
dc.date.accessioned2025-07-11T09:11:23Z-
dc.date.available2025-07-11T09:11:23Z-
dc.identifier.issn2214-8604en_US
dc.identifier.urihttp://hdl.handle.net/10397/114072-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.subjectAdditive manufacturingen_US
dc.subjectDeformation mechanismsen_US
dc.subjectInternal material distributionen_US
dc.subjectLocalized strengthening behavioren_US
dc.subjectTriply periodic minimal surface (TPMS)en_US
dc.titleLocalized strengthening of triply periodic minimal surface lattice structures via tuning the internal material distribution at the grain levelen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume99en_US
dc.identifier.doi10.1016/j.addma.2025.104663en_US
dcterms.abstractGrain coarsening delivers the potential to enhance the multifunctional performances of triply periodic minimal surface (TPMS) structures, such as thermal and electrical conductivity, but it usually results in a weakening effect on the strength of the components. In this research, an abnormal phenomenon of coarse grains and slender walls-induced mechanical strengthening behavior was observed in the stainless steel 316 L TPMS structures fabricated via micro-laser powder bed fusion (μLPBF). The results indicate that a homogenized internal material distribution at the grain level leads to obvious localized strengthening behaviors in the TPMS structures during the localized and densification stage in the compression process. As the grains become coarser or the walls become thinner, the deformation mode of the TPMS structures transforms from the localized collapse deformation to the localized coordinated deformation, in which a homogeneous internal grain distribution is triggered by grain coarsening and wall thinning, promoting a homogeneous stress distribution. Particularly, Diamond (D)-type structures with the middle grains of 25.7 μm in the deformation direction show a 2.32 % enhancement in the energy absorption capacity compared to that of fine-grained (20.2 μm) components. This research outlines a guideline for acquiring an excellent synergy of the mechanical properties and multifunctional performances of the TPMS structures.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAdditive manufacturing, 5 Feb. 2025, v. 99, 104663en_US
dcterms.isPartOfAdditive manufacturingen_US
dcterms.issued2025-02-05-
dc.identifier.scopus2-s2.0-85215927310-
dc.identifier.eissn2214-7810en_US
dc.identifier.artn104663en_US
dc.description.validate202507 bcch-
dc.identifier.FolderNumbera3852b-
dc.identifier.SubFormID51414-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic Universityen_US
dc.description.fundingTextRoyal Society Wolfson Visiting Fellowshipen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-02-05en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-02-05
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

3
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.