Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114071
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorLi, Hen_US
dc.creatorWang, Jen_US
dc.creatorZhang, Wen_US
dc.creatorZhao, Jen_US
dc.creatorLi, Jen_US
dc.creatorFu, MWen_US
dc.date.accessioned2025-07-11T09:11:22Z-
dc.date.available2025-07-11T09:11:22Z-
dc.identifier.issn1359-6454en_US
dc.identifier.urihttp://hdl.handle.net/10397/114071-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectHeterogeneous-structureden_US
dc.subjectHigh-entropy alloysen_US
dc.subjectL1<sub>2</sub> strengtheningen_US
dc.subjectNon-recrystallized regionsen_US
dc.subjectTransformation-induced plasticityen_US
dc.titleAchieving superior ductility with ultrahigh strength via deformation and strain hardening in the non-recrystallized regions of the heterogeneous-structured high-entropy alloyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume283en_US
dc.identifier.doi10.1016/j.actamat.2024.120572en_US
dcterms.abstractDeveloping metallic structural materials with ultrahigh strength and exceptional ductility remains a significant challenge due to the trade-off between both properties. This study presents a heterogeneous-structured high-entropy alloy achieving a superior combination of strength and ductility compared to the reported heterogeneous-structured high entropy alloys through deformation and strain hardening in the non-recrystallized regions. The cold rolling followed by annealing at 760 °C resulted in a heterogeneous microstructure consisting of a small fraction of ultrafine recrystallized grains and extensive non-recrystallized regions, with a significant amount of L12 precipitates throughout the alloy. The architected microstructure led to a significant enhancement of yield strength through mechanisms including dislocation strengthening, L12 strengthening, and grain boundary strengthening. During the deformation, the non-recrystallized regions accommodated substantial strain through the reactivation of pre-existing deformation bands and the synergistic deformation of the FCC and L12 phases, thereby markedly enhancing ductility. Moreover, the metastable FCC matrix underwent FCC→BCC phase transformation, leading to the formation of numerous short-range BCC domains, which further contributed to the pronounced strain hardening. Consequently, the alloy annealing at 760 °C achieved a yield strength of 1.73 GPa, an ultimate strength of 2.05 GPa, and an elongation of 21.0 %. This study underscores a novel strategy for the concurrent enhancement of strength and ductility and provides valuable insights for the design of high-performance alloys.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationActa materialia, 15 Jan. 2025, v. 283, 120572en_US
dcterms.isPartOfActa materialiaen_US
dcterms.issued2025-01-15-
dc.identifier.scopus2-s2.0-85209389326-
dc.identifier.eissn1873-2453en_US
dc.identifier.artn120572en_US
dc.description.validate202507 bcch-
dc.identifier.FolderNumbera3852b-
dc.identifier.SubFormID51413-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Key Research and Development Programen_US
dc.description.fundingTextNatural Science Foundation of Chinaen_US
dc.description.fundingTextKey Research and Development Program of Shaanxien_US
dc.description.fundingTextState Key Laboratory of Solidification Processing in NWPUen_US
dc.description.fundingTextHong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-01-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-01-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

35
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.