Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/114050
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Mechanical Engineering | - |
| dc.creator | Chen, Y | en_US |
| dc.creator | Wen, X | en_US |
| dc.creator | Lu, Y | en_US |
| dc.creator | Lan, Z | en_US |
| dc.creator | Fan, L | en_US |
| dc.creator | Park, HS | en_US |
| dc.creator | Gu, Z | en_US |
| dc.creator | Zhu, J | en_US |
| dc.creator | Su, Z | en_US |
| dc.date.accessioned | 2025-07-10T06:21:43Z | - |
| dc.date.available | 2025-07-10T06:21:43Z | - |
| dc.identifier.issn | 0263-8223 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/114050 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.subject | Sonic crystals | en_US |
| dc.subject | Topological insulator | en_US |
| dc.subject | Topological waveguide | en_US |
| dc.subject | Inverse design | en_US |
| dc.title | Broadband large-scale acoustic topological waveguides | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.volume | 352 | en_US |
| dc.identifier.doi | 10.1016/j.compstruct.2024.118669 | en_US |
| dcterms.abstract | The acoustic topological waveguide (ATW) hosting topologically protected waveguide modes provides a unique opportunity for achieving large-scale sound transport with robustness. However, prevailing ATWs are typically designed by forward-designed sonic crystals (SCs) based on physical intuitions, unavoidably leading to restricted bandwidths. Here, using the inverse-designed SCs with maximized topological bandgaps, we construct broadband ATWs based on both the quantum spin Hall effect and the quantum valley Hall effect. Broadband large-scale transportation, spin-locked one-way transportation, and the squeezing effect of acoustic waves are demonstrated. This study ushers a new path for designing topological devices with broadband performance for large-scale acoustic wave transportation. | - |
| dcterms.accessRights | embargoed access | en_US |
| dcterms.bibliographicCitation | Composite structures, 15 Jan. 2025, v. 352, 118669 | en_US |
| dcterms.isPartOf | Composite structures | en_US |
| dcterms.issued | 2025-01-15 | - |
| dc.identifier.eissn | 1879-1085 | en_US |
| dc.identifier.artn | 118669 | en_US |
| dc.description.validate | 202507 bcch | - |
| dc.identifier.FolderNumber | a3847-n07 | - |
| dc.description.fundingSource | RGC | en_US |
| dc.description.fundingSource | Others | en_US |
| dc.description.fundingText | The National Natural Science Foundation of China (No. 12102134, 12304494, 92263208) | en_US |
| dc.description.fundingText | The Natural Science Foundation of Hunan Province (2022JJ40026) | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.date.embargo | 2027-01-15 | en_US |
| dc.description.oaCategory | Green (AAM) | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



