Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114049
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorFan, L-
dc.creatorChen, Y-
dc.creatorZhu, J-
dc.creatorSu, Z-
dc.date.accessioned2025-07-10T06:21:42Z-
dc.date.available2025-07-10T06:21:42Z-
dc.identifier.issn0965-9978-
dc.identifier.urihttp://hdl.handle.net/10397/114049-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectDeep learningen_US
dc.subjectElastic metamaterialen_US
dc.subjectElastic topological insulatoren_US
dc.subjectElastic waveen_US
dc.subjectInverse designen_US
dc.subjectPhononic crystalen_US
dc.subjectTopological corner stateen_US
dc.titleInverse design of multiband higher-order elastic topological insulators via generative deep learningen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume206-
dc.identifier.doi10.1016/j.advengsoft.2025.103934-
dcterms.abstractHigher-order elastic topological insulators with corner states exhibit significant potential for robust elastic wave localization. Nevertheless, it is quite challenging to design multiband topological structures on demand via traditional empirical methods that rely on trial and error. Here, we present a novel inverse design paradigm for multiband higher-order elastic topological insulators based on deep learning techniques. A generative model that enables a vast design space is first developed, incorporating a rich series of unit cell patterns with the desired crystalline symmetry and fabrication feasibility. Thereafter, a predictive model is constructed to efficiently forecast the dispersion characteristics of any given unit cell, thereby accelerating the discovery of potential multiband topological structures. We demonstrate the effectiveness and reusability of the proposed design framework through diverse examples of multiband higher-order elastic topological insulators with multi-frequency corner states. This deep learning-driven approach addresses the limitations of conventional inverse design methods, which often require computationally expensive simulations and lack flexibility to variable design tasks. Our work underscores great potential of deep learning techniques for the inverse design of high-performance topological metamaterials.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAdvances in engineering software, Aug. 2025, v. 206, 103934-
dcterms.isPartOfAdvances in engineering software-
dcterms.issued2025-08-
dc.identifier.scopus2-s2.0-105002694524-
dc.identifier.artn103934-
dc.description.validate202507 bcch-
dc.identifier.FolderNumbera3847-n05en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe National Natural Science Foundation of China (No. 12102134, 92263208)en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-08-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-08-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

3
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.