Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114042
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Management-
dc.contributorDepartment of Computing-
dc.creatorGao, H-
dc.creatorLi, H-
dc.creatorZhang, CJ-
dc.date.accessioned2025-07-10T06:19:45Z-
dc.date.available2025-07-10T06:19:45Z-
dc.identifier.issn0160-7383-
dc.identifier.urihttp://hdl.handle.net/10397/114042-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectCombination forecastingen_US
dc.subjectEnsemble learningen_US
dc.subjectFeature engineeringen_US
dc.subjectMeta-learningen_US
dc.titleTime and feature varying tourism demand forecastingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume112-
dc.identifier.doi10.1016/j.annals.2025.103959-
dcterms.abstractChoosing appropriate weights for individual models represents a major challenge in combination forecasting. Most research has used constant or time-varying weights during stable periods, ignoring dynamic weights that account for the latent features in multisource data during uncertain periods. We introduce an innovative approach that employs a time- and feature-varying ensemble learning–based meta-learner to consolidate individual model forecasts. The proposed model integrates statistical, machine learning, and deep learning models, along with economic and search engine data, to forecast visitor arrivals in Hong Kong and Sanya City, China. Results show that the proposed model surpasses most individual models and typical combination methods in stable and uncertain times. The findings highlight the proposed model's ability to yield consistent and reliable predictions across a variety of scenarios, particularly during volatile periods.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAnnals of tourism research, May 2025, v. 112, 103959-
dcterms.isPartOfAnnals of tourism research-
dcterms.issued2025-05-
dc.identifier.scopus2-s2.0-105003129287-
dc.identifier.eissn1873-7722-
dc.identifier.artn103959-
dc.description.validate202507 bcch-
dc.identifier.FolderNumbera3856ben_US
dc.identifier.SubFormID51430en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Scholars Program from The Society of Hong Kong Scholars (Project No. G-YZ7R)en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2028-05-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2028-05-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

2
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.