Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113971
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorJiang, Qen_US
dc.creatorRen, Fen_US
dc.creatorWang, Cen_US
dc.creatorWang, Zen_US
dc.creatorKefayati, Gen_US
dc.creatorKenjeres, Sen_US
dc.creatorVafai, Ken_US
dc.creatorCui, Xen_US
dc.creatorLiu, Yen_US
dc.creatorTang, Hen_US
dc.date.accessioned2025-07-04T09:05:18Z-
dc.date.available2025-07-04T09:05:18Z-
dc.identifier.citationv. 245, 126982-
dc.identifier.issn0017-9310en_US
dc.identifier.otherv. 245, 126982-
dc.identifier.urihttp://hdl.handle.net/10397/113971-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectHeat and mass transferen_US
dc.subjectInterstitial tissue flowen_US
dc.subjectMagnetic hyperthermiaen_US
dc.subjectThermal doseen_US
dc.titleMultiphysics simulation of tumor ablation in magnetic hyperthermia treatmenten_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume245en_US
dc.identifier.doi10.1016/j.ijheatmasstransfer.2025.126982en_US
dcterms.abstractMagnetic hyperthermia is a promising cancer treatment method that involves complex multiphysics phenomena, including interstitial tissue fluid flow, magnetic nanoparticle (MNP) transport, and temperature evolution. However, these intricate processes have rarely been studied simultaneously, primarily due to the lack of a comprehensive simulation tool. To address this issue, we develop a comprehensive numerical framework in this study. Using this framework, we simulate a circular-shaped tumor embedded in healthy tissue. The treatment process is examined under two scenarios: one considering gravity and the other neglecting it. Without gravity, the interstitial tissue flow remains stationary, and hence MNP transport and temperature evolution are determined solely by diffusion. The optimal treatment time, when the tumor cells are completely ablated, decreases with both the Lewis number and the heat source number, following a power law. When gravity is considered, treatment efficacy deteriorates due to buoyancy-induced MNP movement, significantly extending the time required to completely ablate the tumor cells. This required time increases with both the buoyancy ratio and the Darcy ratio, also following a power law. The results from this study could provide valuable guidelines for practical magnetic hyperthermia treatment.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationInternational journal of heat and mass transfer, 1 Aug. 2025, v. 245, 126982en_US
dcterms.isPartOfInternational journal of heat and mass transferen_US
dcterms.issued2025-08-01-
dc.identifier.eissn1879-2189en_US
dc.identifier.artn126982en_US
dc.description.validate202506 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3771b-
dc.identifier.SubFormID51015-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-08-01en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-08-01
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.