Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113957
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorCui, J-
dc.creatorHong, J-
dc.creatorSun, L-
dc.date.accessioned2025-07-04T08:34:16Z-
dc.date.available2025-07-04T08:34:16Z-
dc.identifier.issn2194-0401-
dc.identifier.urihttp://hdl.handle.net/10397/113957-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subjectEnergy evolution lawen_US
dc.subjectSAV approachen_US
dc.subjectSemi-implicit schemeen_US
dc.subjectStochastic nonlinear Klein–Gordon equationen_US
dc.subjectStrong convergenceen_US
dc.titleThe stochastic scalar auxiliary variable approach for stochastic nonlinear Klein-Gordon equationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.doi10.1007/s40072-025-00368-x-
dcterms.abstractIn this paper, we propose and analyze semi-implicit numerical schemes for the stochastic nonlinear Klein–Gordon equation (SNKGE) with multiplicative noise. These numerical schemes, called stochastic scalar auxiliary variable (SAV) schemes, are constructed by transforming the considered SNKGE into a higher dimensional stochastic system with a stochastic SAV. We prove that they can be solved explicitly, and preserve the modified energy evolution law and the regularity structure of the original system. These structure-preserving properties are the keys to overcoming the mutual effect of noise and nonlinearity. By providing new regularity estimates of the introduced SAV, we obtain the strong convergence rate of stochastic SAV schemes under Lipschitz conditions. Furthermore, based on the modified energy evolution laws, we derive the exponential moment bounds and sharp strong convergence rate of the proposed schemes for SNKGE with a non-globally Lipschitz nonlinearity in the additive noise case. To the best of our knowledge, this is the first result on the construction and strong convergence of semi-implicit schemes preserving averaged energy evolution law for SNKGEs.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationStochastic partial differential equations: analysis and computations, Published: 29 May 2025, Online first articles, https://doi.org/10.1007/s40072-025-00368-x-
dcterms.isPartOfStochastic partial differential equations: analysis and computations-
dcterms.issued2025-
dc.identifier.scopus2-s2.0-105006739572-
dc.identifier.eissn2194-041X-
dc.description.validate202507 bcch-
dc.identifier.FolderNumbera3799ben_US
dc.identifier.SubFormID51136en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusEarly releaseen_US
dc.date.embargo2026-05-29en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-05-29
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.