Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/113956
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Applied Mathematics | - |
dc.creator | Cui, J | - |
dc.date.accessioned | 2025-07-04T08:34:15Z | - |
dc.date.available | 2025-07-04T08:34:15Z | - |
dc.identifier.issn | 0022-0396 | - |
dc.identifier.uri | http://hdl.handle.net/10397/113956 | - |
dc.language.iso | en | en_US |
dc.publisher | Academic Press | en_US |
dc.subject | Divergence | en_US |
dc.subject | Explicit numerical approximation | en_US |
dc.subject | Regularity estimate | en_US |
dc.subject | Stochastic nonlinear Schrödinger equation | en_US |
dc.subject | Strong convergence | en_US |
dc.title | Explicit approximation for stochastic nonlinear Schrödinger equation | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.spage | 1 | - |
dc.identifier.epage | 39 | - |
dc.identifier.volume | 419 | - |
dc.identifier.doi | 10.1016/j.jde.2024.11.022 | - |
dcterms.abstract | In this paper, we study explicit approximations of stochastic nonlinear Schrödinger equations (SNLSEs). We first prove that the classical explicit numerical approximations are divergent for SNLSEs with polynomial nonlinearities. To enhance the stability, we propose a kind of explicit numerical approximations, and establish the regularity analysis and strong convergence rate of the proposed approximations for SNLSEs. There are two key ingredients in our approach. One ingredient is constructing a logarithmic auxiliary functional and exploiting the Bourgain space to prove new regularity estimates of SNLSEs. Another one is providing a dedicated error decomposition formula and presenting the tail estimates of underlying stochastic processes. In particular, our result answers the strong convergence problem of numerical approximation for 2D SNLSEs. | - |
dcterms.accessRights | embargoed access | en_US |
dcterms.bibliographicCitation | Journal of differential equations, 25 Feb. 2025, v. 419, p. 1-39 | - |
dcterms.isPartOf | Journal of differential equations | - |
dcterms.issued | 2025-02 | - |
dc.identifier.scopus | 2-s2.0-85209669219 | - |
dc.identifier.eissn | 1090-2732 | - |
dc.description.validate | 202507 bcch | - |
dc.identifier.FolderNumber | a3799b | en_US |
dc.identifier.SubFormID | 51135 | en_US |
dc.description.fundingSource | RGC | en_US |
dc.description.fundingSource | Others | en_US |
dc.description.fundingText | National Natural Science Foundation of China | en_US |
dc.description.pubStatus | Published | en_US |
dc.date.embargo | 2027-02-01 | en_US |
dc.description.oaCategory | Green (AAM) | en_US |
Appears in Collections: | Journal/Magazine Article |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.