Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113945
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorDuan, Aen_US
dc.creatorLiuchen, Wen_US
dc.creatorWu, Jen_US
dc.creatorCamoriano, Ren_US
dc.creatorRosasco, Len_US
dc.creatorNavarro-Alarcon, Den_US
dc.date.accessioned2025-07-02T09:02:55Z-
dc.date.available2025-07-02T09:02:55Z-
dc.identifier.citationv. 41, p. 1956-1973-
dc.identifier.issn1552-3098en_US
dc.identifier.otherv. 41, p. 1956-1973-
dc.identifier.otherv. 41, p. 1956-1973-
dc.identifier.urihttp://hdl.handle.net/10397/113945-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication A. Duan, W. Liuchen, J. Wu, R. Camoriano, L. Rosasco and D. Navarro-Alarcon, "Learning Rhythmic Trajectories With Geometric Constraints for Laser-Based Skincare Procedures," in IEEE Transactions on Robotics, vol. 41, pp. 1956-1973, 2025 is available at https://doi.org/10.1109/TRO.2025.3543301.en_US
dc.subjectCosmetic dermatology robotsen_US
dc.subjectGeometric modelingen_US
dc.subjectLearning by demonstrationen_US
dc.subjectRobotic manipulationen_US
dc.subjectTrajectory planningen_US
dc.titleLearning rhythmic trajectories with geometric constraints for laser-based skincare proceduresen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1956en_US
dc.identifier.epage1973en_US
dc.identifier.volume41en_US
dc.identifier.doi10.1109/TRO.2025.3543301en_US
dcterms.abstractThe increasing deployment of robots has significantly enhanced the automation levels across a wide and diverse range of industries. This article investigates the automation challenges of laser-based dermatology procedures in the beauty industry. This group of related manipulation tasks involves delivering energy from a cosmetic laser onto the skin with repetitive patterns. To automate this procedure, we propose to use a robotic manipulator and endow it with the dexterity of a skilled dermatology practitioner through a learning-from-demonstration framework. To ensure that the cosmetic laser can properly deliver the energy onto the skin surface of an individual, we develop a novel structured prediction-based imitation learning algorithm with the merit of handling geometric constraints. Notably, our proposed algorithm effectively tackles the imitation challenges associated with quasi-periodic motions, a common feature of many laser-based cosmetic tasks. The conducted real-world experiments illustrate the performance of our robotic beautician in mimicking realistic dermatological procedures. Our new method is shown to not only replicate the rhythmic movements from the provided demonstrations but also to adapt the acquired skills to previously unseen scenarios and subjects.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE transactions on robotics, 2025, v. 41, p. 1956-1973en_US
dcterms.isPartOfIEEE transactions on roboticsen_US
dcterms.issued2025-
dc.identifier.eissn1941-0468en_US
dc.description.validate202506 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3769d-
dc.identifier.SubFormID51007-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Duan_Learning_Rhythmic_Trajectories.pdfPre-Published version18.27 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.