Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113908
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.contributorDepartment of Applied Physicsen_US
dc.contributorResearch Institute for Advanced Manufacturingen_US
dc.creatorTang, Men_US
dc.creatorLiu, Qen_US
dc.creatorZou, Xen_US
dc.creatorYu, Zen_US
dc.creatorZhang, Ken_US
dc.creatorZhang, Ben_US
dc.creatorAn, Len_US
dc.date.accessioned2025-06-27T09:30:26Z-
dc.date.available2025-06-27T09:30:26Z-
dc.identifier.issn2405-8297en_US
dc.identifier.urihttp://hdl.handle.net/10397/113908-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectCorrosion-resistanceen_US
dc.subjectHeterometallic layeren_US
dc.subjectM(BF<sub>4</sub>)<sub>n</sub>en_US
dc.subjectTransportation kineticsen_US
dc.subjectZn metal batteriesen_US
dc.titleEngineering in situ heterometallic layer for robust Zn electrochemistry in extreme Zn(BF4)2 electrolyte environmenten_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume74en_US
dc.identifier.doi10.1016/j.ensm.2024.103896en_US
dcterms.abstractThe performance of zinc metal batteries is critically affected by the electrolyte environment originating from various zinc salt formulations. Zn(BF4)2, in particular, offers a notable cost advantage and its fluoride-containing groups facilitate the formation of a beneficial ZnF2 interfacial layer, thereby making it a promising candidate for application. Nonetheless, the strong acidity of the Zn(BF4)2-based electrolyte exacerbates the dendrite formation and promotes parasitic reactions, leading to rapid battery failure. Herein, M(BF4)n (M: Cu, Sn, In) salts were adopted as additives in Zn(BF4)2 electrolyte to in situ construct the heterometallic layers. Through comparison, the In(BF4)3-derived ZnIn interface demonstrates superior corrosion-resistance capability and the strongest zinc affinity, protecting the anode from acidic erosion and accelerating the Zn2+ transportation kinetics. The symmetric cell with the optimized electrolyte exhibits a long lifespan of 2500 cycles while the full cell involving the polyaniline cathode also presents a high capacity retention of 81.3 % after 1500 cycles, outperforming the cell with the original Zn(BF4)2 electrolyte. The strategy of generating an interface layer within the battery through electrolyte additives can be readily applied to other metal battery technologies.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEnergy storage materials, Jan. 2025, v. 74, 103896en_US
dcterms.isPartOfEnergy storage materialsen_US
dcterms.issued2025-01-
dc.identifier.scopus2-s2.0-85208300282-
dc.identifier.eissn2405-8289en_US
dc.identifier.artn103896en_US
dc.description.validate202506 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3814b-
dc.identifier.SubFormID51192-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-01-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-01-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

9
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.