Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113905
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorWu, Ben_US
dc.creatorZhang, Zen_US
dc.creatorHu, Yen_US
dc.creatorLiu, Jen_US
dc.creatorZou, Xen_US
dc.creatorZhang, Qen_US
dc.creatorYan, Ken_US
dc.creatorXi, Sen_US
dc.creatorWang, Gen_US
dc.creatorZhang, Xen_US
dc.creatorZeng, Len_US
dc.creatorAn, Len_US
dc.date.accessioned2025-06-27T09:30:23Z-
dc.date.available2025-06-27T09:30:23Z-
dc.identifier.issn1385-8947en_US
dc.identifier.urihttp://hdl.handle.net/10397/113905-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectAnion exchange membrane water electrolyzeren_US
dc.subjectEncapsulation structureen_US
dc.subjectHeterostructuresen_US
dc.subjectLarge current densityen_US
dc.subjectOxygen evolution reactionen_US
dc.titleCation-vacancy-rich NiFe2O4 nanoparticles embedded in Ni3Se2 nanosheets as an advanced catalyst for oxygen evolution reactionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume495en_US
dc.identifier.doi10.1016/j.cej.2024.153270en_US
dcterms.abstractDeveloping efficient and economically viable approaches to produce non-noble metal electrocatalysts with high performance is crucial for anion exchange membrane water electrolyzers. Here, we present a novel and mild two-step method to producing highly active and stability NiFe2O4/Ni3Se2 electrocatalyst by utilizing the dissolution/redeposition effect. Notably, the NiFe2O4 nanoparticles (∼10 nm) wrapped by Ni3Se2 nanosheets creating plentiful heterostructures and strong coupling forces to realize high-efficient alkaline water electrocatalysis. Therefore, the NiFe2O4/Ni3Se2 electrocatalyst delivers current densities of 1000 mA cm−2 under overpotentials of 379 mV for alkaline oxygen evolution and operates over 1200 h across a range of current densities from 50 to 1000 mA cm−2. An anion exchange membrane water electrolyzers with NiFe2O4/Ni3Se2 electrocatalyst exhibits performance (1.85 V @ 0.5 A cm−2, 2.08 @ 1.0 A cm−2) superior to that of the benchmark device at room temperature, and robust stability under industrial conditions. Experimental results and theoretical investigations demonstrate that the special encapsulation structure effectively mitigated catalyst migration and modulated the adsorption of O-containing intermediates. This work provides a rational synthesis strategy and provides useful guidelines to facilely fabricate oxygen evolution reaction electrocatalyst with high performance for an industrial water electrolyzer.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationChemical engineering journal, 1 Sept 2024, v. 495, 153270en_US
dcterms.isPartOfChemical engineering journalen_US
dcterms.issued2024-09-01-
dc.identifier.scopus2-s2.0-85196530101-
dc.identifier.eissn1873-3212en_US
dc.identifier.artn153270en_US
dc.description.validate202506 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3814b-
dc.identifier.SubFormID51187-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextGuangdong Basic and Applied Basic Research Foundationen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-09-01en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-09-01
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

7
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.