Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/113905
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Mechanical Engineering | en_US |
| dc.creator | Wu, B | en_US |
| dc.creator | Zhang, Z | en_US |
| dc.creator | Hu, Y | en_US |
| dc.creator | Liu, J | en_US |
| dc.creator | Zou, X | en_US |
| dc.creator | Zhang, Q | en_US |
| dc.creator | Yan, K | en_US |
| dc.creator | Xi, S | en_US |
| dc.creator | Wang, G | en_US |
| dc.creator | Zhang, X | en_US |
| dc.creator | Zeng, L | en_US |
| dc.creator | An, L | en_US |
| dc.date.accessioned | 2025-06-27T09:30:23Z | - |
| dc.date.available | 2025-06-27T09:30:23Z | - |
| dc.identifier.issn | 1385-8947 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/113905 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.subject | Anion exchange membrane water electrolyzer | en_US |
| dc.subject | Encapsulation structure | en_US |
| dc.subject | Heterostructures | en_US |
| dc.subject | Large current density | en_US |
| dc.subject | Oxygen evolution reaction | en_US |
| dc.title | Cation-vacancy-rich NiFe2O4 nanoparticles embedded in Ni3Se2 nanosheets as an advanced catalyst for oxygen evolution reaction | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.volume | 495 | en_US |
| dc.identifier.doi | 10.1016/j.cej.2024.153270 | en_US |
| dcterms.abstract | Developing efficient and economically viable approaches to produce non-noble metal electrocatalysts with high performance is crucial for anion exchange membrane water electrolyzers. Here, we present a novel and mild two-step method to producing highly active and stability NiFe2O4/Ni3Se2 electrocatalyst by utilizing the dissolution/redeposition effect. Notably, the NiFe2O4 nanoparticles (∼10 nm) wrapped by Ni3Se2 nanosheets creating plentiful heterostructures and strong coupling forces to realize high-efficient alkaline water electrocatalysis. Therefore, the NiFe2O4/Ni3Se2 electrocatalyst delivers current densities of 1000 mA cm−2 under overpotentials of 379 mV for alkaline oxygen evolution and operates over 1200 h across a range of current densities from 50 to 1000 mA cm−2. An anion exchange membrane water electrolyzers with NiFe2O4/Ni3Se2 electrocatalyst exhibits performance (1.85 V @ 0.5 A cm−2, 2.08 @ 1.0 A cm−2) superior to that of the benchmark device at room temperature, and robust stability under industrial conditions. Experimental results and theoretical investigations demonstrate that the special encapsulation structure effectively mitigated catalyst migration and modulated the adsorption of O-containing intermediates. This work provides a rational synthesis strategy and provides useful guidelines to facilely fabricate oxygen evolution reaction electrocatalyst with high performance for an industrial water electrolyzer. | en_US |
| dcterms.accessRights | embargoed access | en_US |
| dcterms.bibliographicCitation | Chemical engineering journal, 1 Sept 2024, v. 495, 153270 | en_US |
| dcterms.isPartOf | Chemical engineering journal | en_US |
| dcterms.issued | 2024-09-01 | - |
| dc.identifier.scopus | 2-s2.0-85196530101 | - |
| dc.identifier.eissn | 1873-3212 | en_US |
| dc.identifier.artn | 153270 | en_US |
| dc.description.validate | 202506 bcch | en_US |
| dc.description.oa | Not applicable | en_US |
| dc.identifier.FolderNumber | a3814b | - |
| dc.identifier.SubFormID | 51187 | - |
| dc.description.fundingSource | Others | en_US |
| dc.description.fundingText | Guangdong Basic and Applied Basic Research Foundation | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.date.embargo | 2026-09-01 | en_US |
| dc.description.oaCategory | Green (AAM) | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



