Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113903
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.contributorResearch Institute for Sports Science and Technologyen_US
dc.creatorWu, Len_US
dc.creatorPan, Zen_US
dc.creatorYuan, Sen_US
dc.creatorShi, Xen_US
dc.creatorLiu, Yen_US
dc.creatorLiu, Fen_US
dc.creatorYan, Xen_US
dc.creatorAn, Len_US
dc.date.accessioned2025-06-27T09:30:21Z-
dc.date.available2025-06-27T09:30:21Z-
dc.identifier.issn1385-8947en_US
dc.identifier.urihttp://hdl.handle.net/10397/113903-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectDegassing layeren_US
dc.subjectDual-layer flow fielden_US
dc.subjectIn-situ visualizationen_US
dc.subjectSelf-pumpingen_US
dc.subjectWater electrolyzeren_US
dc.titleA dual-layer flow field design capable of enhancing bubble self-pumping and its application in water electrolyzeren_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume488en_US
dc.identifier.doi10.1016/j.cej.2024.151000en_US
dcterms.abstractThe conventional flow-field configurations such as parallel and serpentine flow fields in proton exchange membrane water electrolyzer have encountered serious bubble accumulation phenomena in channels, blocking the water delivery to the electrode and creating a large mass-transfer resistance. Therefore, we propose a dual-layer flow field design. Specifically, the degassing layer is tightly installed on the base layer, forming a dual-layer configuration, capable of enhancing the self-pumping effect (bubbles automatically detach from the outer surface of the electrode) due to the formation of capillary pressure difference between the upper and lower surfaces of bubbles. Firstly, we theoretically analyze the feasibility of this dual-layer design through numerical simulation. The results show that the bubbles in the channel will be sucked into the degassing layer from the base layer, thus creating more space for water supply to the electrodes, which is further verified by in-situ visualization. Finally, it is found that an introduction of the degassing layer significantly upgrades the cell performance (approximately 0.15 V at 5.0 A cm−2) compared with conventional single-layer design. Therefore, this study provides insights for future flow-field design in high-performance water electrolyzers.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationChemical engineering journal, 15 May 2024, v. 488, 151000en_US
dcterms.isPartOfChemical engineering journalen_US
dcterms.issued2024-05-15-
dc.identifier.scopus2-s2.0-85189677031-
dc.identifier.eissn1873-3212en_US
dc.identifier.artn151000en_US
dc.description.validate202506 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3814a-
dc.identifier.SubFormID51181-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-05-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-05-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

31
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.