Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113901
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorWu, Len_US
dc.creatorZhang, Gen_US
dc.creatorXie, Ben_US
dc.creatorHuo, Wen_US
dc.creatorJiao, Ken_US
dc.creatorAn, Len_US
dc.date.accessioned2025-06-27T09:30:20Z-
dc.date.available2025-06-27T09:30:20Z-
dc.identifier.issn0017-9310en_US
dc.identifier.urihttp://hdl.handle.net/10397/113901-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectCoolant flowen_US
dc.subjectDouble-cell structureen_US
dc.subjectFull-morphology simulationen_US
dc.subjectPEM fuel cellen_US
dc.subjectPower densityen_US
dc.titleElucidating the automobile proton exchange membrane fuel cell of innovative double-cell structure by full-morphology simulationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume217en_US
dc.identifier.doi10.1016/j.ijheatmasstransfer.2023.124666en_US
dcterms.abstractThe structural design of PEM fuel cell is crucial to improving its power density, and the cell structure largely depends on the bipolar plate (BP). This study compares the conventional single-cell structure and double-cell structure through three-dimensional (3D) large-scale (cell area: 312 cm2) full-morphology simulation. As for the double-cell structure, the channels are arranged in a dislocation manner and there is one cooling flow field per two cells. For the structure of the BP, we also fully considered the realistic morphology of distribution area and the coolant flow. It is found that the heat dissipation effect of double-cell structure is worse but the performance is very close compared to single-cell structure. Moreover, its volumetric power density is significantly improved (∼ 20%) due to the reduction in height. It is also found that increasing the velocity of coolant in the double-cell structure increases the performance first and then decreases.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationInternational journal of heat and mass transfer, 15 Dec. 2023, v. 217, 124666en_US
dcterms.isPartOfInternational journal of heat and mass transferen_US
dcterms.issued2023-12-15-
dc.identifier.scopus2-s2.0-85170567865-
dc.identifier.eissn1879-2189en_US
dc.identifier.artn124666en_US
dc.description.validate202506 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3814a-
dc.identifier.SubFormID51179-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Shenzhen Science and Technology Innovation Commission; China Postdoctoral Science Foundation; Tianjin University; Central Universitiesen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2025-12-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2025-12-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.