Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113871
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorLiu, Y-
dc.creatorHosseini, SA-
dc.creatorLiu, C-
dc.creatorFeinberg, M-
dc.creatorDorschner, B-
dc.creatorWang, Z-
dc.creatorKarlin, I-
dc.date.accessioned2025-06-26T07:11:18Z-
dc.date.available2025-06-26T07:11:18Z-
dc.identifier.issn2469-990X-
dc.identifier.urihttp://hdl.handle.net/10397/113871-
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.rights©2025 American Physical Societyen_US
dc.rightsThe following publication Liu, Y., Hosseini, S. A., Liu, C., Feinberg, M., Dorschner, B., Wang, Z., & Karlin, I. (2025). Transition time of a bouncing drop. Physical Review Fluids, 10(1), 013602 is available at https://doi.org/10.1103/PhysRevFluids.10.013602.en_US
dc.subject.en_US
dc.titleTransition time of a bouncing dropen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume10-
dc.identifier.issue1-
dc.identifier.doi10.1103/PhysRevFluids.10.013602-
dcterms.abstractContact time of bouncing drops is one of the most essential parameters to quantify the water repellency of surfaces. Generally, the contact time on superhydrophobic surfaces is known to be Weber number independent. Here, we probe an additional characteristic time, transition time, inherent in water drops impacting on superhydrophobic surfaces, marking a switch from a predominantly lateral motion to an axial motion. Systematic experiments and numerical simulations show that the transition time is also Weber number independent and accounts for half the contact time. Additionally, we identify a Weber-independent partition of volume at the maximum spreading state between the rim and the lamella and show that the latter contains 1/4 of the total volume of the drop.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPhysical review fluids, Jan. 2025, v. 10, no. 1, 013602-
dcterms.isPartOfPhysical review fluids-
dcterms.issued2025-01-
dc.identifier.scopus2-s2.0-85215226042-
dc.identifier.artn013602-
dc.description.validate202506 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3778aen_US
dc.identifier.SubFormID51051en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China (grant nos. 52071076); Natural Science Foundation of Jiangsu Province, China (Grant No. BK20240934); Jiangsu Key Laboratory for Advanced Metallic Materials of Southeast University, China (grant nos. AMM2021B01)en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
PhysRevFluids.10.013602.pdf1.43 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

1
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.