Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113866
DC FieldValueLanguage
dc.contributorResearch Institute for Intelligent Wearable Systems-
dc.contributorSchool of Fashion and Textiles-
dc.contributorDepartment of Mechanical Engineering-
dc.creatorCheng, Zen_US
dc.creatorFu, Jen_US
dc.creatorKang, Pen_US
dc.creatorYao, Hen_US
dc.creatorMo, Fen_US
dc.creatorHu, Hen_US
dc.date.accessioned2025-06-26T07:11:14Z-
dc.date.available2025-06-26T07:11:14Z-
dc.identifier.issn1614-6832en_US
dc.identifier.urihttp://hdl.handle.net/10397/113866-
dc.language.isoenen_US
dc.publisherJohn Wiley and Sons Incen_US
dc.subjectDendrite growthen_US
dc.subjectElectrochemical reversibilityen_US
dc.subjectLaser texturingen_US
dc.subjectMetallic Zn anodeen_US
dc.subjectOrdered micro-pits arrayen_US
dc.subjectSurface topography engineeringen_US
dc.subjectDendrite growthen_US
dc.subjectElectrochemical reversibilityen_US
dc.subjectLaser texturingen_US
dc.subjectMetallic Zn anodeen_US
dc.subjectOrdered micro-pits arrayen_US
dc.subjectSurface topography engineeringen_US
dc.titleSurface topography optimization engineering : stabilizing zinc metal anode/aqueous electrolyte interfacial chemistryen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume15en_US
dc.identifier.issue23en_US
dc.identifier.doi10.1002/aenm.202405767en_US
dcterms.abstractUnstable metallic Zn anode (MZA)/electrolyte interfacial chemistry has long blocked the practical implementation of aqueous Zn metal batteries (ZMBs). Herein, this study presents an innovative surface topology optimization engineering via an efficient laser-texturing technique to achieve the front-end design of MZA for enhanced interface stability. Specifically, the laser-textured MZA features an in situ formed ZnO coating with a high-density, ordered micro-pits array architecture (LT-Zn@ZnO). Systematic experimental analyses and theoretical calculations reveal that the LT-Zn@ZnO ensures a more uniform electric field distribution and stronger corrosion resistance than pristine Zn foil. These enhancements effectively suppress dendrite proliferation and hydrogen evolution on the LT-Zn@ZnO surface, achieving more stable LT-Zn@ZnO/electrolyte interfacial chemistry. Therefore, the LT-Zn@ZnO acquires exceptional electrochemical reversibility, sustaining over 1840 h at 10 mA cm−2/1 mAh cm−2. This results in the assembled large-sized (24 cm2) LT-Zn@ZnO-
dcterms.abstractTi@MnO₂ pouch cell achieving a higher initial capacity of 158.6 mAh and significantly improved rechargeability, retaining 105 mAh after 400 cycles, compared to that employing untreated Zn foil, which has an initial capacity of 144.7 mAh and failed in fewer than 200 cycles. The presented surface topography optimization strategy offers an innovative solution for front-end design enhancement of MZA, leading to improved electrochemical reversibility toward ZMBs with satisfactory rechargeability.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAdvanced energy materials, 17 June 2025, v. 25, no. 23, 2405767en_US
dcterms.isPartOfAdvanced energy materialsen_US
dcterms.issued2025-06-17-
dc.identifier.scopus2-s2.0-85219694633-
dc.identifier.eissn1614-6840en_US
dc.identifier.artn2405767en_US
dc.description.validate202506 bcch-
dc.identifier.FolderNumbera3777-
dc.identifier.SubFormID51027-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Excellent Youth Fund of Anhui Province; the Major Project of Anhui Provincial University Science Research Programen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-06-17en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-06-17
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

7
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.