Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113858
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.creatorYan, Xen_US
dc.creatorSong, Yen_US
dc.creatorZheng, Hen_US
dc.creatorCui, Hen_US
dc.creatorWang, Zen_US
dc.creatorXu, Wen_US
dc.date.accessioned2025-06-25T09:13:49Z-
dc.date.available2025-06-25T09:13:49Z-
dc.identifier.issn2211-2855en_US
dc.identifier.urihttp://hdl.handle.net/10397/113858-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.subjectBubble energy harvestingen_US
dc.subjectDurabilityen_US
dc.subjectSlippery liquid surfaceen_US
dc.titleA bubble energy generator featuring lubricant-impregnated surface with high durability and efficiencyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume121en_US
dc.identifier.doi10.1016/j.nanoen.2023.109238en_US
dcterms.abstractHarvesting bubble energy emerges as a potential sustainable solution to harness tremendous marine energy sources. Yet, current bubble energy generators are susceptible to unstable performance owing to the degradation of the physiochemical properties of surface materials under the harsh underwater environment such as surface fouling and wetting transition. Here, we report the design of bubble energy generators featuring the cooperative integration of a slippery lubricant-impregnated porous surface and transistor-inspired architecture, referred to as SLIPS-TBG, that can generate electricity from moving bubbles with high stability in submerged conditions. In this design, the slippery and configurable lubricant layer serves as not only a smooth and mechanically stable surface for bubble transport but also a protective layer preventing the underlying solid materials from direct contact with the external harsh environment. Together with the transistor-inspired architecture, the SLIPS-TBG can deliver a stable electric output of 26.4 V, an instantaneous peak power density of 58.6 W m-3 from continuous bubble impingement in water media, even in extreme conditions involving mechanical abrasion and corrosion. We envision such a design represents a significant step toward real-life applications for bubble-based energy harvesting.en_US
dcterms.abstractGraphical abstract: [Figure not available: see fulltext.]en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationNano energy, Mar. 2024, v. 121, 109238en_US
dcterms.isPartOfNano energyen_US
dcterms.issued2024-03-
dc.identifier.eissn2211-3282en_US
dc.identifier.artn109238en_US
dc.description.validate202506 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3721-
dc.identifier.SubFormID50860-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Innovation and Technology Council of Hong Kong; Shenzhen Science and Technology Innovation Council; China Postdoctoral Science Foundationen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-03-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-03-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.