Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113810
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorYue, Hen_US
dc.creatorZhang, Hen_US
dc.creatorZhu, Qen_US
dc.creatorAi, Yen_US
dc.creatorTang, Hen_US
dc.creatorZhou, Len_US
dc.date.accessioned2025-06-24T06:38:06Z-
dc.date.available2025-06-24T06:38:06Z-
dc.identifier.issn0196-8904en_US
dc.identifier.urihttp://hdl.handle.net/10397/113810-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectHigher-order dynamic mode decompositionen_US
dc.subjectNarrowband synthesis random flow generationen_US
dc.subjectOffshore wind turbineen_US
dc.subjectTip speed ratioen_US
dc.subjectTurbulence effecten_US
dc.subjectWind turbine wake analysisen_US
dc.titleWake dynamics of a wind turbine under real-time varying inflow turbulence : a coherence mode perspectiveen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume332en_US
dc.identifier.doi10.1016/j.enconman.2025.119729en_US
dcterms.abstractTurbulence plays a pivotal role in the aerodynamic performance and wake dynamics of wind turbines; however, current numerical simulation studies often overlook its effects or simplify them through modeling, leading to significant deviations and discrepancies from real-world conditions. To address this gap, this study proposes an active narrowband synthesis random flow generation method for real-time inflow turbulence generation at the inlet of the National Renewable Energy Laboratory's offshore 5 MW wind turbine using large eddy simulation. This study examined the impact of turbulence on vortex dynamics in the wind turbine wake, employing higher-order dynamic mode decomposition to analyze coherent modes. The results indicate that turbulence and tip speed ratio significantly influence the aerodynamic behavior of the wind turbine. The turbulence alters the wake's velocity distribution, producing a more skewed, oblique W-shaped configuration, while enhancing fluctuating wind energy at specific frequencies. Additionally, the effects of turbulence are predominantly concentrated in the modes with fn = 1 and fn = 2, with turbulence disrupting the stability of tip vortices in the far wake while preserving the stability of near-wake vortices at high tip speed ratios. As rotor speed decreases, turbulent effects increasingly dominate the wake vortex characteristics. This study concludes that turbulence, particularly when combined with a reduction in tip speed ratio, accelerates the destabilization of tip vortices, leading to more complex vortex structures in the near wake.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEnergy conversion and management, 15 May 2025, v. 332, 119729en_US
dcterms.isPartOfEnergy conversion and managementen_US
dcterms.issued2025-05-15-
dc.identifier.scopus2-s2.0-86000630062-
dc.identifier.eissn1879-2227en_US
dc.identifier.artn119729en_US
dc.description.validate202506 bcch-
dc.identifier.FolderNumbera3771c-
dc.identifier.SubFormID51022-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Natural Science Foundation of Heilongjiang Province Chinaen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-05-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-05-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

16
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.