Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113809
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorHe, Zen_US
dc.creatorZhao, Yen_US
dc.creatorZhang, Hen_US
dc.creatorTang, Hen_US
dc.creatorZhu, Qen_US
dc.creatorAi, Yen_US
dc.creatorHe, Xen_US
dc.creatorZhou, Len_US
dc.date.accessioned2025-06-24T06:38:06Z-
dc.date.available2025-06-24T06:38:06Z-
dc.identifier.issn0029-8018en_US
dc.identifier.urihttp://hdl.handle.net/10397/113809-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectDamping ratioen_US
dc.subjectGallopingen_US
dc.subjectSquare cylinderen_US
dc.subjectVortex-induced vibrationen_US
dc.titleVortex-induced vibrations and galloping of a square cylinder: the impact of damping and mass ratioen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume320en_US
dc.identifier.doi10.1016/j.oceaneng.2025.120371en_US
dcterms.abstractThis paper focuses on the effects of the damping ratio and mass ratio on the vortex-induced vibration (VIV) and galloping of a square cylinder through numerical simulations at a Reynolds number 200. Dynamic Mode Decomposition (DMD) is applied to uncover how the damping ratio influences the vortex shedding mode of the cylinder. The results show that for VIV, the vibration amplitude decreases with an increasing damping ratio as is expected, and the corresponding mathematic model is provided. As the damping ratio increases, the mean drag coefficient decreases, while the standard deviation of the fluctuating lift coefficient decreases rapidly before gradually rising, with a knee point at damping ratio 0.23. With increasing damping ratio, the dominant mode changes while the vortex shedding mode remains “2S”. For galloping, the mean drags, vibration amplitude, and fluctuating lift all decrease sharply with rising damping ratio, after which they stabilize. The mathematic model for vibration amplitude and damping ratio is also provided. This inflection point is identified as the critical damping ratio, which regulates the onset of galloping. Across this process, the dominant mode remains M1, while the vortex shedding mode transitions from “P + S” to “2S” as the damping ratio increases.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationOcean engineering, 15 Mar. 2025, v. 320, 120371en_US
dcterms.isPartOfOcean engineeringen_US
dcterms.issued2025-03-15-
dc.identifier.scopus2-s2.0-85214883888-
dc.identifier.eissn1873-5258en_US
dc.identifier.artn120371en_US
dc.description.validate202506 bcch-
dc.identifier.FolderNumbera3771c-
dc.identifier.SubFormID51020-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNatural Science Foundation of Heilongjiang Province Chinaen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-03-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-03-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.