Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113777
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.contributorResearch Institute for Smart Energy-
dc.creatorLi, Cen_US
dc.creatorLi, Hen_US
dc.creatorRen, Xen_US
dc.creatorHu, Len_US
dc.creatorDeng, Jen_US
dc.creatorMo, Jen_US
dc.creatorSun, Xen_US
dc.creatorChen, Gen_US
dc.creatorYu, Xen_US
dc.date.accessioned2025-06-24T06:37:39Z-
dc.date.available2025-06-24T06:37:39Z-
dc.identifier.issn1936-0851en_US
dc.identifier.urihttp://hdl.handle.net/10397/113777-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectChelationen_US
dc.subjectHigh voltageen_US
dc.subjectMultielectron conversionen_US
dc.subjectUreaen_US
dc.subjectZinc−iodine batteryen_US
dc.titleUrea chelation of i⁺ for high-voltage aqueous zinc-iodine batteriesen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author's file: Urea-Chelation of I⁺ for High Voltage Aqueous Zinc-Iodine Batteriesen_US
dc.identifier.spage2633en_US
dc.identifier.epage2640en_US
dc.identifier.volume19en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1021/acsnano.4c14451en_US
dcterms.abstractThe multielectron conversion electrochemistry of I-/I0/I+ enables high specific capacity and voltage in zinc-iodine batteries. Unfortunately, the I+ ions are thermodynamically unstable and are highly susceptible to hydrolysis. Current endeavors primarily focus on exploring interhalogen chemistry to activate the I0/I+ couple. However, the practical working voltage is below the theoretical level. In this study, the I0/I+ redox couple is fully activated, and I+ is efficiently stabilized by a chelation agent of cost-effective urea in the conventional aqueous electrolyte. A record-high plateau voltage of 1.8 V vs Zn/Zn2+ has been realized. Theoretical calculations combined with spectroscopy studies and electrochemical tests reveal that the coordination between the electron-deficient I+ and the electron-rich O and N atoms in urea molecules is thermodynamically favorable for I0/I+ conversion and inhibits the self-disproportionation of I+, which in turn promotes rapid kinetics and excellent reversibility of I0/I+. Moreover, urea decreases the water activity in the electrolyte by forming hydrogen bonds to further suppress the hydrolysis of I+. Accordingly, a high specific capacity of 419 mAh g-1 is delivered at 1C, and 147 mAh g-1 capacity is retained after 10,000 cycles at 5C. This work offers effective insights into formulating halogen-free electrolytes for high-performance aqueous zinc-iodine batteries.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAcs nano, 21 Jan. 2025, v. 19, no. 2, p. 2633-2640en_US
dcterms.isPartOfACS nanoen_US
dcterms.issued2025-01-21-
dc.identifier.scopus2-s2.0-85214499958-
dc.identifier.eissn1936-086Xen_US
dc.description.validate202506 bcch-
dc.identifier.FolderNumbera3768-
dc.identifier.SubFormID50977-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Nature Science Foundation of China (52402052, 52174276); Natural Science Foundation of Guangdong (No. 2023A1515010020)en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-01-21en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-01-21
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

33
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.