Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113773
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.contributorSchool of Fashion and Textilesen_US
dc.creatorZhang, YRen_US
dc.creatorLi, LJen_US
dc.creatorLi, Gen_US
dc.creatorLin, Zen_US
dc.creatorWang, RTen_US
dc.creatorChen, DBen_US
dc.creatorLei, YFen_US
dc.creatorTan, Den_US
dc.creatorWang, ZKen_US
dc.creatorZhao, Yen_US
dc.creatorXue, LJen_US
dc.date.accessioned2025-06-24T05:35:43Z-
dc.date.available2025-06-24T05:35:43Z-
dc.identifier.urihttp://hdl.handle.net/10397/113773-
dc.language.isoenen_US
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.rightsCopyright © 2025 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).en_US
dc.rightsCreative Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/)en_US
dc.rightsThe following publication Zhang, Y., Li, L., Li, G., Lin, Z., Wang, R., Chen, D., Lei, Y., Tan, D., Wang, Z., Zhao, Y., & Xue, L. Topological elastic liquid diode. Science Advances, 11(14), eadt9526 is available at https://dx.doi.org/10.1126/sciadv.adt9526.en_US
dc.titleTopological elastic liquid diodeen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume11en_US
dc.identifier.issue14en_US
dc.identifier.doi10.1126/sciadv.adt9526en_US
dcterms.abstractOn-demand liquid transportation is fundamentally important and holds great potential in various fields, such as water collection and biological engineering. However, it remains highly challenging to in situ manipulate the direction of liquid flow on a lyophilic surface. Here, a topological elastic liquid diode (TELD) that could manipulate the flow direction is developed by combining the Araucaria leaf inspired ratchet array and the elasticity of silicon rubber. The flow pathway on the lyophilic TELD can be conveniently managed by regulating the competition forces along orthogonal directions at the liquid front, which is instantly realized by adjusting the mechanical strain in TELD (mode 1 regulation) or inserting extra forces at the liquid front (mode 2 regulation). Furthermore, TELD can serve as a logic gate, stress valve, microfluidic reactor, and fog collector. Thus, the work here establishes strategies for in situ and instant manipulation of liquid flow on a lyophilic surface.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationScience advances, 2025, v. 11, no. 14, eadt9526en_US
dcterms.isPartOfScience advancesen_US
dcterms.issued2025-
dc.identifier.isiWOS:001459464300024-
dc.identifier.eissn2375-2548en_US
dc.identifier.artneadt9526en_US
dc.description.validate202506 bcrcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS, a3778a-
dc.identifier.SubFormID51035-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; the National Key R&D Program of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
sciadv.adt9526.pdf4.14 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

WEB OF SCIENCETM
Citations

6
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.