Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113735
PIRA download icon_1.1View/Download Full Text
Title: Asymmetric hydrogel electrolyte featuring a customized anode and cathode interfacial chemistry for advanced Zn-I₂ batteries
Authors: Liu, Q 
Yu, Z 
Fan, K 
Huang, H 
Zhang, B 
Issue Date: 20-Aug-2024
Source: ACS nano, 20 Aug., 2024, v. 18, no. 33, p. 22484-22494
Abstract: An integrated asymmetric hydrogel electrolyte with a tailored composition and chemical structure on the cathode/anode-electrolyte interface is designed to boost the cost-effective, high-energy Zn-I2 battery. Such a configuration concurrently addresses the parasitic reactions on the Zn anode side and the polyiodide shuttle issue afflicting the cathode. Specifically, the Zn2+-cross-linked sodium alginate and carrageenan dual network (Carra-Zn-Alg) is adopted to guide the Zn2+ transport, achieving a dendrite-free morphology on the Zn surface and ensuring long-term stability. For the cathode side, the poly(vinyl alcohol)-strengthened poly(3,4-ethylenedioxythiophene)polystyrenesulfonate hydrogel (PVA-PEDOT) with high conductivity is employed to trap polyiodide and accelerate electron transfer for mitigating the shuttle effect and facilitating I2/I- redox kinetics. Attributing to the asymmetrical architecture with a customized interfacial chemistry, the optimized Zn-I2 cell exhibits a superior Coulombic efficiency of 99.84% with a negligible capacity degradation at 0.1 A g-1 and an enhanced stability of 10 000 cycles at 5 A g-1. The proposed asymmetric hydrogel provides a promising route to simultaneously resolve the distinct challenges encountered by the cathode and anode interfaces in rechargeable batteries.
Keywords: Asymmetric
Carra-Zn-Alg
Hydrogel electrolyte
PVA−PEDOT
Zn−I₂ battery
Publisher: American Chemical Society
Journal: ACS nano 
ISSN: 1936-0851
EISSN: 1936-086X
DOI: 10.1021/acsnano.4c07880
Rights: © 2024 American Chemical Society
This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © 2024 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsnano.4c07880.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Liu_Asymmetric_Hydrogel_Electrolyte.pdfPre-Published version2.63 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

17
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

16
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.