Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113719
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.creatorFang, Zen_US
dc.creatorChen, Yen_US
dc.creatorWu, Hen_US
dc.creatorLi, Zen_US
dc.creatorLu, Cen_US
dc.date.accessioned2025-06-19T06:23:26Z-
dc.date.available2025-06-19T06:23:26Z-
dc.identifier.issn0733-8724en_US
dc.identifier.urihttp://hdl.handle.net/10397/113719-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication Z. Fang, Y. Chen, H. Wu, Z. Li and C. Lu, "Short-Chirped-Pulse OFDR Assisted by Negative Quality Factor Analysis of Correlation for Adaptive Distributed Acoustic Sensing," in Journal of Lightwave Technology, vol. 43, no. 8, pp. 3777-3785, 15 April, 2025 is available at https://doi.org/10.1109/JLT.2025.3526787.en_US
dc.subjectDistributed acoustic sensingen_US
dc.subjectNegative quality factoren_US
dc.subjectOptical frequency domain reflectometryen_US
dc.titleShort-chirped-pulse OFDR assisted by negative quality factor analysis of correlation for adaptive distributed acoustic sensingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage3777en_US
dc.identifier.epage3785en_US
dc.identifier.volume43en_US
dc.identifier.issue8en_US
dc.identifier.doi10.1109/JLT.2025.3526787en_US
dcterms.abstractWe propose a distributed acoustic sensing technique that utilizes correlation analysis derived from short-chirped-pulse optical frequency-domain reflectometry (OFDR). The performance of the technique is enhanced by negative quality factor (NQF) analysis, which evaluates the reliability of Rayleigh backscattering spectra (RBS) shift readings under vibration. By selectively filtering out valid RBS shift data, we can overcome the intensity response range limitations typically imposed by the sweeping range. Using this approach, we have successfully demonstrated the detection of maximum vibration frequencies up to 1 kHz over a 32 km fiber under test, achieving a signal-to-noise ratio (SNR) of up to 30 dB and a spatial resolution of 14 m. Furthermore, the system's ability to sense vibrations, particularly those of unexpectedly large magnitudes, has been confirmed.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of lightwave technology, 15 Apr. 2025, v. 43, no. 8, p. 3777-3785en_US
dcterms.isPartOfJournal of lightwave technologyen_US
dcterms.issued2025-04-
dc.identifier.scopus2-s2.0-105001685915-
dc.identifier.eissn1558-2213en_US
dc.description.validate202506 bchyen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3742-
dc.identifier.SubFormID50925-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Fang_Short-Chirped-Pulse_OFDR_Assisted.pdfPre-Published version6.65 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.