Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113678
DC FieldValueLanguage
dc.contributorDepartment of Data Science and Artificial Intelligence-
dc.creatorHuang, Y-
dc.creatorWu, S-
dc.creatorZhang, W-
dc.creatorWu, J-
dc.creatorFeng, L-
dc.creatorTan, KC-
dc.date.accessioned2025-06-17T07:40:51Z-
dc.date.available2025-06-17T07:40:51Z-
dc.identifier.issn1089-778X-
dc.identifier.urihttp://hdl.handle.net/10397/113678-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.subjectAutomatic Algorithm Designen_US
dc.subjectLarge Language Modeen_US
dc.subjectMulti-objective Optimizationen_US
dc.titleAutonomous multi-objective optimization using large language modelen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.doi10.1109/TEVC.2025.3561001-
dcterms.abstractMulti-objective optimization problems (MOPs) are ubiquitous in real-world applications, presenting a complex challenge of balancing multiple conflicting objectives. Traditional multi-objective evolutionary algorithms (MOEAs), though effective, often rely on domain-specific expertise for improved optimization performance, hindering adaptability to unseen MOPs. In recent years, the Large Language Models (LLMs) has revolutionized software engineering by enabling the autonomous generation and refinement of programs. Leveraging this breakthrough, we propose a new LLM-based framework that autonomously designs MOEAs for solving MOPs. The proposed framework includes a robust testing module to refine the generated MOEA through error-driven dialogue with LLMs, a dynamic selection strategy along with informative prompting-based crossover and mutation to fit textual optimization pipeline. Our approach facilitates the design of MOEA without the extensive demands for expert intervention, thereby speeding up the innovation of MOEA. Empirical studies across various MOP categories validate the robustness and superior performance of our proposed framework.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationIEEE transactions on evolutionary computation, Date of Publication: 15 April 2025, Early Access, https://doi.org/10.1109/TEVC.2025.3561001-
dcterms.isPartOfIEEE transactions on evolutionary computation-
dcterms.issued2025-
dc.identifier.scopus2-s2.0-105002843655-
dc.identifier.eissn1941-0026-
dc.description.validate202506 bcch-
dc.identifier.FolderNumbera3717ben_US
dc.identifier.SubFormID50842en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe National Natural Science Foundation of Chinaen_US
dc.description.pubStatusEarly releaseen_US
dc.date.embargo0000-00-00 (to be updated)en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 0000-00-00 (to be updated)
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.