Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113675
DC FieldValueLanguage
dc.contributorDepartment of Data Science and Artificial Intelligence-
dc.contributorDepartment of Computing-
dc.creatorSun, P-
dc.creatorWu, J-
dc.creatorDevos, P-
dc.creatorBotteldooren, D-
dc.date.accessioned2025-06-17T07:40:49Z-
dc.date.available2025-06-17T07:40:49Z-
dc.identifier.issn0893-6080-
dc.identifier.urihttp://hdl.handle.net/10397/113675-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectEfficient neuromorphic inferenceen_US
dc.subjectNeuromorphic computingen_US
dc.subjectParameter-free attentionen_US
dc.subjectSpiking neural networken_US
dc.titleTowards parameter-free attentional spiking neural networksen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume185-
dc.identifier.doi10.1016/j.neunet.2025.107154-
dcterms.abstractBrain-inspired spiking neural networks (SNNs) are increasingly explored for their potential in spatiotemporal information modeling and energy efficiency on emerging neuromorphic hardware. Recent works incorporate attentional modules into SNNs, greatly enhancing their capabilities in handling sequential data. However, these parameterized attentional modules have placed a huge burden on memory consumption, a factor that is constrained on neuromorphic chips. To address this issue, we propose a parameter-free attention (PfA) mechanism that establishes a parameter-free linear space to bolster feature representation. The proposed PfA approach can be seamlessly integrated into the spiking neuron, resulting in enhanced performance without any increase in parameters. The experimental results on the SHD, BAE-TIDIGITS, SSC, DVS-Gesture, DVS-Cifar10, Cifar10, and Cifar100 datasets well demonstrate its competitive or superior classification accuracy compared with other state-of-the-art models. Furthermore, our model exhibits stronger noise robustness than conventional SNNs and those with parameterized attentional mechanisms. Our codes can be accessible at https://github.com/sunpengfei1122/PfA-SNN.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationNeural networks, May 2025, v. 185, 107154-
dcterms.isPartOfNeural networks-
dcterms.issued2025-05-
dc.identifier.scopus2-s2.0-85215234516-
dc.identifier.eissn1879-2782-
dc.identifier.artn107154-
dc.description.validate202506 bcch-
dc.identifier.FolderNumbera3717ben_US
dc.identifier.SubFormID50838en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextFlemish Government; Research Foundation - Flandersen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-05-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-05-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

7
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.