Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113650
DC FieldValueLanguage
dc.contributorDepartment of Computingen_US
dc.contributorSchool of Hotel and Tourism Managementen_US
dc.creatorNie, Jen_US
dc.creatorQiang, Qen_US
dc.creatorZhang, JCen_US
dc.creatorHao, Fen_US
dc.date.accessioned2025-06-17T01:33:56Z-
dc.date.available2025-06-17T01:33:56Z-
dc.identifier.issn0031-3203en_US
dc.identifier.urihttp://hdl.handle.net/10397/113650-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectAnchor similarity graphen_US
dc.subjectCo-clusteringen_US
dc.subjectDiscrete indicator matrixen_US
dc.subjectGraph-based clusteringen_US
dc.subjectMulti-view clusteringen_US
dc.titleEfficient multi-view discrete co-clustering with learned graphen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume168en_US
dc.identifier.doi10.1016/j.patcog.2025.111811en_US
dcterms.abstractGraph-based multi-view clustering typically involves constructing view-specific similarity graphs, fusing graphs from multiple views, and performing two-step spectral clustering. However, several challenges arise: (1) constructing similarity graphs is computationally expensive, (2) balancing and integrating information across views is complex, and (3) the two-step clustering leads to information loss, solution deviations, and high computational cost. To address these issues, we present an efficient multi-view discrete co-clustering framework. It automatically learns a multi-view consistent anchor similarity matrix, dynamically weighting the contributions of different views based on the original data structure and evolving indicators. The resulting anchor similarity matrix serves as the weight matrix for a bipartite graph, facilitating efficient co-clustering of raw data and anchors. Additionally, we introduce a time-economical optimization algorithm to solve for discrete indicators directly. Extensive experiments demonstrate that the proposed method outperforms multiple competitors, highlighting its superior performance and efficiency. The code is available at https://github.com/caccode/EMDC.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationPattern recognition, Dec. 2025, v. 168, 111811en_US
dcterms.isPartOfPattern recognitionen_US
dcterms.issued2025-12-
dc.identifier.scopus2-s2.0-105006699528-
dc.identifier.eissn1873-5142en_US
dc.identifier.artn111811en_US
dc.description.validate202506 bcwcen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3706, a3808-
dc.identifier.SubFormID50796, 51164-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-12-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-12-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

1
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.