Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113610
DC FieldValueLanguage
dc.contributorResearch Institute for Advanced Manufacturingen_US
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorZhang, Yen_US
dc.creatorQin, Ben_US
dc.creatorOuyang, Den_US
dc.creatorLiu, Len_US
dc.creatorFeng, Cen_US
dc.creatorYan, Yen_US
dc.creatorYe, Sen_US
dc.creatorKe, Hen_US
dc.creatorChan, KCen_US
dc.creatorWang, Wen_US
dc.date.accessioned2025-06-16T00:36:46Z-
dc.date.available2025-06-16T00:36:46Z-
dc.identifier.issn2214-8604en_US
dc.identifier.urihttp://hdl.handle.net/10397/113610-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.subjectAdditive manufacturingen_US
dc.subjectImproved strength-ductility synergyen_US
dc.subjectInterstitial atom strengtheningen_US
dc.subjectMatrix decompositionen_US
dc.subjectRefractory high-entropy alloysen_US
dc.titleStrong yet ductile refractory high entropy alloy fabricated via additive manufacturingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume81en_US
dc.identifier.doi10.1016/j.addma.2024.104009en_US
dcterms.abstractRefractory high-entropy alloys (RHEA), particularly those with a body-centered cubic lattice structure, are garnering increased interest due to their potential industrial applications. However, their strength-ductility trade-off at room temperature presents a challenge that requires resolution. In this study, we fabricated a ductile Ti42Hf21Nb21V16 RHEA for additive manufacturing using a directed energy deposition (DED) technique, with a focused laser serving as the energy source. The additively manufactured RHEA demonstrated an exceptional strength-ductility synergy, boasting a gigapascal yield strength and a substantial tensile strain until failure (∼22.5%). Compared to its as-cast state, the tensile yield strength increased by 32%, and ductility improved slightly by 2%, suggesting a potential solution to the enduring strength-ductility trade-off dilemma. The enhanced yield strength can be attributed to solidification-enabled interstitial atoms resulting from the low-content nitrogen and oxygen atmosphere applied, while the high ductility is linked to the modified dislocation motion mechanism facilitated by the decomposition of the body-centered cubic matrix. This finding opens up possibilities for in-situ tailoring of microstructure and compositions to achieve superior mechanical performance in alloys through additive manufacturing processes.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAdditive manufacturing, 5 Feb. 2025, v. 81, 104009en_US
dcterms.isPartOfAdditive manufacturingen_US
dcterms.issued2024-02-05-
dc.identifier.scopus2-s2.0-85184747851-
dc.identifier.eissn2214-7810en_US
dc.identifier.artn104009en_US
dc.description.validate202506 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3680, a4206-
dc.identifier.SubFormID50702, 52257-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China (Grant Nos. 52104362, 52071222 and 52001221); Guangdong Major Project of Basic and Applied Basic Research, China (Grant No. 2019B030302010); Guangdong Basic and Applied Basic Research, China (Grant No. 2020B1515130007); the National Key Research and Development Program of China (Grant No. 2021YFA0716302)en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-02-05en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-02-05
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

29
Citations as of Dec 5, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.