Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113605
DC FieldValueLanguage
dc.contributorResearch Institute for Advanced Manufacturingen_US
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorOuyang, Den_US
dc.creatorZhang, Cen_US
dc.creatorChen, Ren_US
dc.creatorLi, Nen_US
dc.creatorChan, KCen_US
dc.creatorLiu, Len_US
dc.date.accessioned2025-06-16T00:36:43Z-
dc.date.available2025-06-16T00:36:43Z-
dc.identifier.issn0921-5093en_US
dc.identifier.urihttp://hdl.handle.net/10397/113605-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.subjectAdditive manufacturingen_US
dc.subjectCrack inhibitionen_US
dc.subjectMechanical propertiesen_US
dc.subjectRefractory high-entropy alloysen_US
dc.titleThe microcrack inhibition and mechanical properties of an in-situ synthesized refractory high-entropy alloy fabricated by additive manufacturingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume913en_US
dc.identifier.doi10.1016/j.msea.2024.147071en_US
dcterms.abstractA crack-free refractory high-entropy alloy (RHEA), composed of (Cr25Mo25Nb25V25)99C1 was synthesized in-situ from blended elemental powders using laser directed energy deposition (DED). This study revealed that a minor addition of carbon effectively enhances the grain-boundary cohesion of the DEDed RHEA, thereby mitigating microcrack propagation along the grain boundaries during the additive manufacturing process. Notably, the DEDed RHEA exhibited exceptional high-temperature mechanical properties, highlighted by a yield strength of 787 MPa at 1000 °C along with sustained strain-hardening capacity, surpassing other additively manufactured high-entropy alloys reported to date. The remarkable high-temperature strength of the DEDed RHEA can be attributed to the potent pinning effect exerted on dislocations within both dendritic and interdendritic regions at elevated temperature. This effect stems from severe lattice distortion, local chemical fluctuations (LCFs), solute atom pinning, and dislocation interactions. The method employed to inhibit microcrack formation, along with the elucidation of the high-temperature strengthening mechanism, opens avenues for the fabrication of RHEAs tailored for high-temperature structural applications.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationMaterials science and engineering. A, Structural materials : properties, microstructure and processing, Oct. 2024, v. 913, 147071en_US
dcterms.isPartOfMaterials science and engineering. A, Structural materials : properties, microstructure and processingen_US
dcterms.issued2024-10-
dc.identifier.scopus2-s2.0-85200601941-
dc.identifier.eissn1873-4936en_US
dc.identifier.artn147071en_US
dc.description.validate202506 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3680, a4206-
dc.identifier.SubFormID50694, 52262-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China (NSFC) (Project No. N_PolyU523/20 and No. 52061160483); the National Natural Science Foundation of China (No. 52201181)en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-10-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-10-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

6
Citations as of Dec 5, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.