Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113601
DC FieldValueLanguage
dc.contributorResearch Institute for Advanced Manufacturing-
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorYang, Cen_US
dc.creatorDing, Jen_US
dc.creatorQu, Sen_US
dc.creatorOuyang, Den_US
dc.creatorZhang, Len_US
dc.creatorZhang, Yen_US
dc.creatorKe, HBen_US
dc.creatorSong, Xen_US
dc.creatorChan, KCen_US
dc.creatorWang, WHen_US
dc.date.accessioned2025-06-16T00:36:40Z-
dc.date.available2025-06-16T00:36:40Z-
dc.identifier.issn1359-6454en_US
dc.identifier.urihttp://hdl.handle.net/10397/113601-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectAdditive manufacturingen_US
dc.subjectBulk metallic glassesen_US
dc.subjectEnergy absorptionen_US
dc.subjectIn situ X-ray computed tomographyen_US
dc.subjectTPMSen_US
dc.titleHigh strength bioinspired cellular metallic glasses with excellent energy absorptionen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author's file: High strength bioinspired TPMS-architected metallic glasses with excellent energy absorptionen_US
dc.identifier.volume285en_US
dc.identifier.doi10.1016/j.actamat.2024.120688en_US
dcterms.abstractBulk metallic glasses (BMGs) have been restricted in structural engineering applications for decades due to their strong yet inherently brittle nature, which can lead to catastrophic failure owing to strain-softening originating from shear localization. Using architectural design to alter the localized deformation is key to solving this dilemma. In this study, four types of bioinspired triply periodic minimal surface (TPMS) structures were constructed using Zr-based MG powders via the micro Laser Powder Bed Fusion (μLPBF) technique. Two types of TPMS structures were found to reach remarkable energy absorption capabilities above 30 kJ/kg and high specific strength above 0.08 MPa·kg⁻¹·m³. By investigating the fracture morphology and using digital volume correlation (DVC) analysis, we identified a hybrid ductilization mechanism at both the macro and micro levels in the deformation process of MG TPMS structures. The MG lattices dissipate energy through crack bands and shear bands, leveraging their plasticity and controllable crack propagation to maximize the energy absorption capacity of BMGs. Our work offers a new approach in overcoming the strength-plasticity trade-off, enabling the development of high-strength architected metallic glasses with excellent energy absorption, which holds great promise for energy-absorbing applications.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationActa materialia, 15 Feb. 2025, v. 285, 120688en_US
dcterms.isPartOfActa materialiaen_US
dcterms.issued2025-02-15-
dc.identifier.scopus2-s2.0-85213995314-
dc.identifier.eissn1873-2453en_US
dc.identifier.artn120688en_US
dc.description.validate202506 bcch-
dc.identifier.FolderNumbera3680-
dc.identifier.SubFormID50688-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Guangdong Major Project of Basic and Applied Basic Research, China (Grant No 2019B030302010); the National Natural Science Foundation of China (Grants No 52071222 and 52201181); the National Key Research and Development Program of China (Grant No 2021YFA0716302); the Guangdong Provincial Quantum Science Strategic Initiative (GDZX2301001)en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-02-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-02-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

3
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.